

# Best Available Techniques for Pollution Prevention and Control in the European Sulphuric Acid and Fertilizer Industries

Booklet No. 3 of 8:

# PRODUCTION OF SULPHURIC ACID

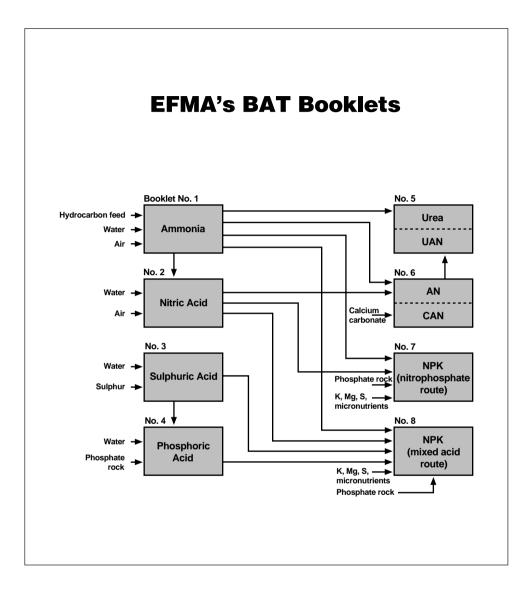
2000

European Sulphuric Acid Association (ESA) A sector group of CEFIC

EFMA

European Fertilizer Manufacturers' Association

Ave. E van Nieuwenhuyse 4 B-1160 Brussels Belgium


Best Available Techniques for Pollution Prevention and Control in the European Sulphuric Acid and Fertilizer Industries

Booklet No. 3 of 8:

# PRODUCTION OF SULPHURIC ACID

# Copyright 2000 – ESA/EFMA

This publication has been prepared by member companies of the European Sulphuric Acid Association (ESA) in co-operation with the European Fertilizer Manufacturers' Association (EFMA). Neither Association nor any individual member company can accept liability for accident or loss attributable to the use of the information given in this Booklet.



# Content

| PF | REFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1. | GENERAL INFORMATION<br>1.1 General Information About the Sulphuric Acid Industry<br>1.2 Scope of this BAT Booklet                                                                                                                                                                                                                                                                                                                                                         | 6<br>6<br>7                                      |
| 2. | <ul> <li>APPLIED PROCESSES AND TECHNIQUES</li> <li>2.1 Raw Material Preparation including Storage and Handling</li> <li>2.2 Material Processing</li> <li>2.3 Product Finishing</li> <li>2.4 Use of Auxiliary Chemicals/Materials</li> <li>2.5 Intermediate and Final Product Storage</li> <li>2.6 Energy Generation/Consumption, Other Specific Utilities</li> <li>2.7 Gas Cleaning of Metallurgical Off-gases</li> <li>2.8 Handling of Waste Gas/Stack Height</li> </ul> | 8<br>8<br>10<br>11<br>12<br>13<br>14<br>15<br>15 |
| 3. | <ul> <li>PRESENT CONSUMPTION/EMISSION LEVELS</li> <li>3.1 Consumption of Energy/Raw Materials/Water Inputs and Waste</li> <li>3.2 Emission Levels</li> <li>3.3 Environmental Aspects</li> </ul>                                                                                                                                                                                                                                                                           | 16<br>16<br>16<br>17                             |
| 4. | CANDIDATE BATS<br>4.1 Available Techniques<br>4.2 Environmental Performance<br>4.3 Economic Performance                                                                                                                                                                                                                                                                                                                                                                   | 21<br>21<br>35<br>39                             |
| 5. | <ul><li>BEST AVAILABLE TECHNIQUES</li><li>5.1 BAT for the Different Types of Sulphuric Acid Processes</li><li>5.2 BAT for Contact Processes</li><li>5.3 Cross Media Impact</li></ul>                                                                                                                                                                                                                                                                                      | 41<br>41<br>44<br>48                             |
| 6. | EMERGING TECHNIQUES                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49                                               |
| 7. | CONCLUSIONS AND RECOMMENDATIONS<br>7.1 Conclusions<br>7.2 Recommendations                                                                                                                                                                                                                                                                                                                                                                                                 | 50<br>50<br>52                                   |
| 8. | REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                               |
| Gl | LOSSARY AND UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56                                               |
| Al | PPENDIX Inputs and Outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57                                               |

# PREFACE

The European Sulphuric Acid Association (ESA) and the European Fertilizer Manufacturers Association (EFMA) have prepared recommendations on Best Available Techniques (BAT) in response to the EU Directive on integrated pollution prevention and control (IPPC Directive). This Booklet (based on Report EUR 13006 EN) has been prepared by ESA and EFMA experts drawn from member companies. The recommendations cover the production processes of Sulphuric Acid and Oleum and reflect the industry perception of which techniques are generally considered to be feasible and present achievable emission levels associated with the manufacturing of the products.

The Booklet uses the same definition of BAT as that given in the IPPC Directive. BAT covers both the technology used and the management practices necessary to operate a plant efficiently and safely. The focus is primarily on the technological processes, since good management is considered to be independent of the process route. The industry recognises, however, that good operational practices are vital for effective environmental management and that the principles of Responsible Care should be adhered to by all companies.

Two sets of BAT emission levels are given:-

- For existing production units where pollution prevention is usually obtained by revamps or end-of-pipe solutions
- For new plants where pollution prevention is integrated in the process design

The emission levels refer to emissions during normal operations of typical sized plants. Other levels may be more appropriate for smaller or larger units and high emissions may occur in start-up and shut-down operations and in emergencies. Only the more significant types of emissions are covered and the emission levels given do not include fugitive emissions and emissions due to rainwater. The emission levels are given both in concentration values (ppm or mg.m<sup>-3</sup>) and in load values (emission per tonne 100% wt sulphuric acid). It should be noted that there is not necessarily a direct link between the concentration values and the load values.

It is recommended that the given emission levels should be used as reference levels for the establishment of regulatory authorisations. Deviations should be allowed as governed by:-

- Local environmental requirements, given that the global and inter-regional environments are not adversely affected
- Practicalities and costs of achieving BAT
- Production constraints given by product range, energy source and the availability of raw materials

If authorisation is given to exceed these BAT emission levels, the reasons for the deviation should be documented locally. Existing plants should be given ample time to comply with BAT emission levels and care should be taken to reflect the technological differences between new and existing plants when issuing regulatory authorisations, as discussed in this Booklet.

There is a wide variety of methods for monitoring emissions. The emission levels given are subject to some variance, depending on the method chosen and the precision of the analysis. It is important when issuing regulatory authorisations, to identify the monitoring method(s) to be applied. Differences in national practice may give rise to differing results, as the methods are not internationally standardised. The given emission levels should not, therefore, be considered as absolute but as references which are independent of the methods used.

ESA would also advocate a further development for the authorisation of sulphuric acid plants. The plants can be complex, with the integration of several production processes and they can be located close to other industries. Thus there should be a shift away from authorisation governed by concentration values of single point emission sources. It would be better to define maximum allowable load values from an entire operation, e.g. from a total site area. However, this implies that emissions from single units should be allowed to exceed the values in the BAT recommendation, provided that the total load from the whole complex is comparable with that which can be deduced from there. This approach will enable plant management to find the most effective environmental solutions and would be to the benefit of our common environment.

Finally, it should be emphasised that each individual member company of ESA is responsible for deciding how to apply the guiding principles of the BAT Booklet on the Production of Sulphuric Acid.

# 1. GENERAL INFORMATION

### 1.1 General Information About the Production of Sulphuric Acid

More sulphuric acid is produced than any other chemical in the world. In Western Europe in 1997 over 19 million tonnes were produced, the total production world-wide being estimated at around 150 million tonnes. About half of this output is produced in North America, Western Europe and Japan [20], [21].

| In Million tonnes H <sub>2</sub> SO <sub>4</sub> | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  |
|--------------------------------------------------|-------|-------|-------|-------|-------|-------|
| World sulphuric acid production                  | 145.7 | 132.5 | 137.9 | 148.9 | 151.3 | 155.6 |
| World sulphuric acid consumption                 | 147.1 | 132.8 | 138.8 | 150.1 | 153.3 | 157.5 |

 Table 1 World Production and Consumption

The output of sulphuric acid at base metal smelters today represents about 20% of all acid production. Whereas in 1991 smelter acid production amounted to 27.98 millions tonnes, it is calculated that the output in the following decade will have grown to reach 44.97 millions tonnes in 2001. Smelter acid will be more than 25% of world sulphuric acid production compared to some 18% in 1991.

| In Million tonnes H <sub>2</sub> SO <sub>4</sub> | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  |
|--------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Belgium/Luxembourg                               | 1.836 | 1.535 | 1.515 | 2.174 | 2.067 | 2.160 |
| Finland                                          | 1.351 | 1.361 | 1.373 | 1.376 | 1.479 | 1.570 |
| France                                           | 3.132 | 2.515 | 2.227 | 2.382 | 2.263 | 2.242 |
| Germany                                          | 3.800 | 3.515 | 3.380 | 3.530 | 3.978 | 3.496 |
| Greece                                           | 0.620 | 0.588 | 0.630 | 0.515 | 0.615 | 0.675 |
| Italy                                            | 1.725 | 1.423 | 1.228 | 1.344 | 1.588 | 1.590 |
| Netherlands                                      | 1.080 | 1.000 | 1.073 | 1.113 | 1.060 | 1.040 |
| Norway                                           | 0.587 | 0.564 | 0.585 | 0.609 | 0.594 | 0.666 |
| Spain                                            | 2.420 | 2.176 | 2.348 | 2.265 | 2.786 | 2.810 |
| Sweden                                           | 0.567 | 0.497 | 0.518 | 0.485 | 0.620 | 0.630 |
| United Kingdom                                   | 1.568 | 1.269 | 1.225 | 1.293 | 1.196 | 1.205 |

Table 2 Production of Sulphuric Acid in the Countries of the European Community

Sulphuric acid is produced in all the countries of Europe with the major producers being Germany, Spain, France, Belgium and Italy. These countries accounting for 70% of the total European production. It is used directly or indirectly in nearly all industries and is a vital commodity in any national economy. In fact, sulphuric acid is so widely used that its consumption rate, like steel production or electric power, can be used to indicate a nation's prosperity.

Most of its uses are actually indirect in that the sulphuric acid is used as a reagent rather than an ingredient. The largest single sulphuric acid consumer by far is the fertiliser industry. Sulphuric acid is used with phosphate rock in the manufacture of phosphate fertilisers. Smaller amounts are used in the production of ammonium and potassium sulphate. Substantial quantities are used as an acidic dehydrating agent in organic chemical and petrochemical processes, as well as in oil refining. In the metal processing industry, sulphuric acid is used for pickling and descaling steel; for the extraction of copper, uranium and vanadium from ores; and in non-ferrous metal purification and plating. In the inorganic chemical industry, it is used most notably in the production of titanium dioxide.

Certain wood pulping processes for paper also require sulphuric acid, as do some textile and fibres processes (such as rayon and cellulose manufacture) and leather tanning. Other end uses for sulphuric acid include: effluent/water treatment, plasticisers, dyestuffs, explosives, silicate for toothpaste, adhesives, rubbers, edible oils, lubricants and the manufacture of food acids such as citric acid and lactic acid.

Probably the largest use of sulphuric acid in which this chemical becomes incorporated into the final product is in organic sulphonation processes, particularly for the production of detergents. Many pharmaceuticals are also made by sulphonation processes.

#### 1.2 Scope of this BAT Booklet

Many processes of sulphuric acid production have been developed according to the large number of sources of raw materials  $(SO_2)$ , and their specific characteristics. The present document deals also with the production of oleum. It is possible to draw a general diagram of sulphuric acid production distinguishing the two fundamental steps of the process (see Figure 1):-

- Conversion of SO<sub>2</sub> into SO<sub>3</sub>
- Absorption of SO<sub>3</sub>

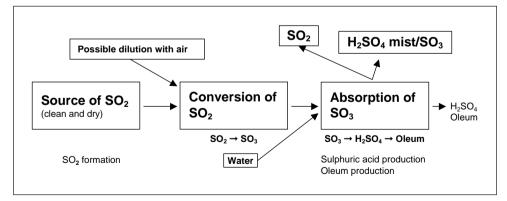



Figure 1 – General Diagram of Sulphuric Acid Production.

# 2. APPLIED PROCESSES AND TECHNIQUES

# 2.1 Raw Material Preparation including Storage and Handling

#### 2.1.1 Sulphur storage and handling

Liquid sulphur is a product of the desulphurisation of natural gas and crude oil by the Claus-Process, with the cleaning of coal flue gas as a second source. The third way is the melting of natural solid sulphur (Frash-process) but this is not in frequent use because there are many difficulties in removing the contaminants.

The following is a typical analysis of molten sulphur (quality: bright yellow):-

| Ash               | max. 0.015% weight         |
|-------------------|----------------------------|
| Carbon            | max. 0.02% weight          |
| Hydrogen sulphide | ca. 1-2mg.kg <sup>-1</sup> |
| Sulphur dioxide   | 0mg.kg <sup>-1</sup>       |
| Arsenic           | max. 1mg.kg <sup>-1</sup>  |
| Mercury           | max. 1mg.kg <sup>-1</sup>  |
| Water             | max. 0.05% weight          |

Liquid sulphur is transported in ships, railcars and trucks made of mild steel. Special equipment is used for all loading and unloading facilities. Liquid sulphur is stored in insulated and steam heated mild steel tanks. The tank is is equipped with submerged fill lines to avoid static charges and reduce agitation in the tank. The ventilation of the tanks is conventionally free. A further fact is less de-gasing of hydrogen sulphide and sulphur dioxide. All pipes and pumps are insulated and steam heated. The normal temperature level of the storage and handling is about 125-145°C.

# 2.1.2 Ore storage and handling

#### 2.1.2.1 Pyrites

Normally pyrites is produced in a flotation process, which means that the concentrate is relatively finely ground with a moisture content dependent on how much energy is spent in the drying step. The analyses are variable within following ranges:-

| Element |          | Content    | Content in one specific pyrite |
|---------|----------|------------|--------------------------------|
| Sulphur | weight % | 30-52      | 50-52                          |
| Iron    | weight % | 26-46      | 45                             |
| Copper  | weight % | up to 2.7  | max. 0,10                      |
| Zinc    | weight % | up to 3.0  | max. 0,10                      |
| Arsenic | weight % | up to 10.0 | max. 0,06                      |
| Water   | weight % | 5-9        | 5                              |

 Table 3 Range of Analyses of Pyrites

A number of other metals are present in small quantities. The right hand column shows the analyses of one certain pyrite.

Pyrites should be covered during storage and transport to avoid dust. Outside storage can give rise to two problems depending on the climate:-

- Dust problems can be expected under dry conditions. A dusty atmosphere, especially inside buildings can cause a fire or an explosion under the right conditions
- Water in contact with pyrites becomes acidic under wet conditions. This water has to be removed and treated before loading for transport to the recipient. With too high a moisture content the pyrites will give clogging problems in the internal transport system at the plant

#### 2.1.2.2 Metal sulphide ores

Approximately 85% of primary copper is produced from sulphur ores and therefore sulphur is a by-product of the majority of copper processes. Copper ore concentrates are produced in the flotation process and consist mainly of copper pyrites or chalcopyrite (CuFeS<sub>2</sub>) but may also contain pyrites, chalconite, burnite, cuprite and other minerals. A typical concentrate composition is 26-30% Cu, 27-29% Fe and 28-32% S.

Copper concentrates are usually processed by pyrometallurgical methods. Ores and concentrates are delivered to site by road, rail or ship. Copper concentrates are usually stored in closed buildings. Silo systems are used for the intermediate storage and preparation of the blend. Dust collection and abatement systems are used extensively during the unloading, storage and distribution of solid material.

Zinc and lead are for a major part, produced from sulphur ores and thus sulphuric acid is also a final product of treating these ores in metallurgical processes. In the first step the basic ores are treated in a flotation process to become concentrates, which are then shipped to Smelters for metal recovery. The concentrates are usually processed by metallurgical methods to remove sulphur. Ores and concentrates are delivered to site by road, train or ship.

The storage on site may be in the open air or in covered buildings depending on local conditions. In every case silo systems and dust collection systems such as bag filters are used to avoid dust propagation during intermediate storage in the process and the preparation of the blend.

#### 2.1.3 Organic spent acids

Spent acids from different operations such as steel pickling, titanium dioxide production or organic sulphonation reactions have such a variety of compositions that it is not possible to define a set of general rules for preparation, storage and handling. Each case must be treated individually with special consideration given to dilution and any impurities which may affect all operations. Experience and know-how are of paramount importance.

Spent acids come mainly from organic chemical production. Sulphuric acid is mostly used as a catalyst and needs to be replaced with fresh concentrated acid when diluted and/or saturated with organics. Alkylation processes in refineries and nitration and sulphonation processes in the chemical industry generate large amounts of spent acids which, after regeneration, become clean acid which can be recycled in any process.

Spent acids can be received by barges, road and rail tankers. Chemical analysis and physical tests are carried out before unloading to be sure the product meets the acceptance contract and to avoid any chemical reaction in storage when mixing spent acids from different processes. Storage vessels are bunded. The storage gas phases are connected to the thermal decomposition furnace through non flammable systems on account of the risks due to the organics vapour pressure, to some dissolved sulphur containing products and to potential NO<sub>x</sub> emissions. Nitrogen is used to blanket the gas phase to avoid any oxygen intrusion. Materials of construction depend on the strength of the spent acid. Corrosion resistant pumps and pipes are used for the feeds to the furnace.

#### 2.1.4 H<sub>2</sub>S or other sulphur containing gases

Off-gases containing  $H_2S$  and  $CS_2$  are formed during the production of textile fibres, which are made in the viscose process. Off-gases containing  $H_2S$  or  $SO_2$ , depending on the process, are formed during the production of synthesis gas using fuel oil as a feedstock.

#### 2.1.5 SO<sub>2</sub> gases from different sources

Gases containing up to 90%  $SO_2$  from the production of organic compounds such as sulphonates and sulphites or from the combustion of gases containing H<sub>2</sub>S, can be used as a source of SO<sub>2</sub> after the separation of organic compounds.

#### 2.1.6 Sulphate salts

Ferrous sulphate is obtained in large quantities as its heptahydrate (FeSO<sub>4</sub>.7H<sub>2</sub>O) during the regeneration of pickling liquors or as a side product in the TiO<sub>2</sub> process via the sulphate route.

#### 2.2 Material Processing

#### 2.2.1 Conversion of SO<sub>2</sub> into SO<sub>3</sub>

The design and operation of sulphuric acid plants are focused on the following gas phase chemical equilibrium reaction with a catalyst:-

$$SO_2 + \frac{1}{2}O_2 \iff SO_3 \Delta H = -99 \text{ kJ.mol}^{-1}$$

This reaction is characterised by the conversion rate, which is defined as follows:-

conversion rate = 
$$\frac{SO_2 \text{ in} - SO_2 \text{ out}}{SO_2 \text{ in}} \times 100 \,(\%)$$

Both thermodynamic and stoichiometric considerations are taken into account in maximising the formation of  $SO_3$ . The Lechatelier-Braun Principle is usually taken into account in deciding how to optimise the equilibrium. This states that when an equilibration system is subjected to stress, the system will tend to adjust itself in such a way that part of the stress is relieved. These stresses are, for example, a variation of temperature, pressure, or the concentration of a reactant. For  $SO_2/SO_3$  systems, the following methods are available to maximise the formation of  $SO_3$ :-

- Removal of heat a decrease in temperature will favour the formation of SO<sub>3</sub> since this is an exothermic process
- Increased oxygen concentration
- Removal of SO<sub>3</sub> (as in the case of the double absorption process)
- Raised system pressure
- Selection of the catalyst to reduce the working temperature (equilibrium)
- Increased reaction time

Optimum overall system behaviour requires a balance between reaction velocity and equilibrium. However, this optimum also depends on the  $SO_2$  concentration in the raw gas and on its variability with time. Consequently, each process is more or less specific for a particular  $SO_2$  source.

# 2.2.2 Absorption of SO<sub>3</sub>

Sulphuric acid is obtained from the absorption of  $SO_3$  and water into  $H_2SO_4$  (with a concentration of at least 98%).

The efficiency of the absorption step is related to:-

- The  $H_2SO_4$  concentration of the absorbing liquid (98.5-99.5%)
- The range of temperature of the liquid (normally 70°C-120°C)
- The technique of the distribution of acid
- The raw gas humidity (mist passes the absorption equipment)
- The mist filter
- The temperature of incoming gas
- The co-current or counter-current character of the gas stream in the absorbing liquid
- SO3 emissions depend on:-
- The temperature of gas leaving absorption
- The construction and operation of the final absorber
- The device for separating H<sub>2</sub>SO<sub>4</sub> aerosols
- The acid mist formed upstream of the absorber through the presence of water vapour

# 2.3 Product Finishing

# 2.3.1 Dilution of absorber acids

The acid produced, normally 95.5%-96.5% or 98.5%-99.5%, is diluted with water or steam condensate down to the commercial concentrations: 25%, 37%, 48%, 78%, 96% and 98%  $H_2SO_4$ . The dilution can be made in a batch process or continuously through in-line mixing.

## 2.3.2 SO<sub>2</sub>-Stripping

A small amount of air is blown through the warm acid in a column or tower to reduce the remaining  $SO_2$  in the acid to < 20mg  $SO_2$ .kg<sup>-1</sup>. The air containing  $SO_2$  is returned to the process.

# 2.3.3 Purification

Sulphuric acid from the start up of acid plants after long repair may be contaminated and clouded by insoluble iron sulphate, or silicate from bricks or packing. The acid can be filtered using conventional methods. Filter elements are required in the filling lines for tanker or rail-way loading to maintain quality.

# 2.3.4 Denitrification

A number of different methods are used for the denitrification of sulfuric acid and oleum. Various chemicals are used to reduce nitrosylsulphuric acid (NOHSO<sub>4</sub>) or nitrate to N<sub>2</sub> or N<sub>x</sub>O<sub>y</sub> (See Table 4). The reactant must be added in stoichiometric amounts.

| Method of denitrification                           | Special conditions                                      | Effect                          | In tail gas                       |
|-----------------------------------------------------|---------------------------------------------------------|---------------------------------|-----------------------------------|
| Urea                                                | Absorber/tanks                                          | +/only <80% acid                | N <sub>2</sub>                    |
| Dihydrazinedisulphate 40%                           | Absorber/tanks                                          | +++/acid and oleum              | N <sub>2</sub> , N <sub>2</sub> O |
| Amidosulphonic acid 15%<br>Hydroxylammoniumsulphate | Absorber/tanks                                          | +++/only 50-99.5% acid          | N <sub>2</sub>                    |
| SO <sub>2</sub> saturated acid                      | 78% H <sub>2</sub> SO <sub>4</sub> /<br>separated tower | +++/only acid/<br>water balance | NO <sub>x</sub>                   |

 Table 4 Methods of Denitrification

# 2.3.5 Decolourisation

Acid produced from smelter plants or from acid regeneration plants can contain hydrocarbons or carbonaceous material, which is absorbed in sulphuric acid. This causes a 'black' colour. The decolourisation is known as "acid bleaching".

| Method of decolourisation       | Special conditions | Effect             |
|---------------------------------|--------------------|--------------------|
| Hydrogen peroxide solution <60% | Absorber/tanks     | +++/acid and oleum |

# 2.4 Use of Auxiliary Chemicals/Materials

# 2.4.1 Catalysts

When producing sulphuric acid by the contact process an important step is to produce sulphur trioxide by passing a gas mixture of sulphur dioxide and oxygen over a catalyst according to the equation:-

$$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3 - \Delta H$$

Without a catalyst this reaction needs a very high temperature to have a realistic rate. The equilibrium is however in favour of  $SO_2$  – formation at higher temperatures which makes the conversion very poor.

Of all substances tested for catalytic activity toward sulphur dioxide oxidation only vanadium compounds, platinum and iron oxide have proven to be technically satisfactory. Today vanadium pentoxide is used almost exclusively.

Commercial catalysts contain 4-9 wt % vanadium pentoxide,  $V_2O_5$ , as the active component, together with alkali metal sulphate promoters. Under operating conditions these form a liquid melt in which the reaction is thought to take place. Normally potassium sulphate is used as a promoter but in recent years also caesium sulphate has been used. Caesium sulphate lowers the melting point, which means that the catalyst can be used at lower temperatures. The carrier material is silica in different forms.

The catalyst components are mixed together to form a paste and then usually extruded into solid cylindrical pellets, rings or star-rings which are then baked at elevated temperatures. Ring (or star-ring) shaped catalysts, which are mostly used today, give a lower pressure drop and are less sensitive to dust blockage.

The lower temperature limit is 410-430°C for conventional catalysts and 380-390°C for caesium doped catalysts. The upper temperature limit is 600-650°C above which, catalytic activity can be lost permanently due to reduction of the internal surface.

The average service life for the catalyst is about 10 years. Service life is generally determined by catalyst losses during the screening of the catalyst which is necessary from time to time to remove dust [1], [2].

#### 2.5 Intermediate and Final Product Storage

There is no air pollution problem connected with the storage, handling and shipping of sulphuric acid because of the very low vapour pressure of  $H_2SO_4$  in normal temperature conditions. The handling of pure  $SO_3$  and oleum requires safety procedures and management in order to avoid atmospheric pollution in the case of an accidental release.

Important considerations with regard to the ancillary operations referred to above, are as follows:-

- The receipt, handling and storage of powdered raw materials should be carried out so as to minimise the emission of dust. Liquid and gaseous feeds should be carefully contained to prevent the emission of odorous fumes or gases
- Oleum and  $SO_3$  storage and handling operations, which are often linked with  $H_2SO_4$  production, should be installed with a means of controlling fume emissions. Venting should be directed towards acid tanks or scrubbing systems. Installations should be built by following the best engineering practice. The emissions can condense and solidify in cool areas so this must be very carefully guarded against to prevent over-pressurisation of storage tanks

 During storage and handling of sulphuric acid, leaks may have an impact on the soil or on waters. Precautions have to be taken in order to reduce the possibility and the gravity of these leaks. See reference [3] for the minimum requirements

#### 2.6 Energy Generation/Consumption, Other Specific Utilities

The process steps: burning sulphur, roasting sulphidic ores,  $SO_2$  conversion and  $SO_3$  absorption are exothermic processes. This means that from a technical point of view, installations for removing energy are of great importance for the production of sulphuric acid. This is coupled most effectively with energy winning in different levels and forms. Energy winning is dependent on the process strategy for the target products, for the local conditions, and for a possible relationship to other production processes. The age of the production units is more important than energy generation/consumption because materials of construction and specific buildings fix the technical possibilities for energy optimisation. A sulphur burning process in conjunction with double absorption is the most energy efficient.

The different energy-winning techniques are:-

- All techniques of steam generation as used in electrical power generation with special apparatus such as super-heater, economiser or steam boiler for sulphur burning
- Steam generation by the inter-pass absorption with temperatures from 110°C to 180°C and steam pressures from 1.5bar<sub>abs</sub> to 11bar<sub>abs</sub>
- Steam turbines with power generation up to 15MWh (1,250t.d<sup>-1</sup> 100% H<sub>2</sub>SO<sub>4</sub> Plant)
- Water preheating in the end absorption from 40°C to 80°C

Special programs are used for the optimisation of the process (e.g. cost savings and winning energy).

An essential characteristic of a conventional cold-gas plant (metallurgical gases) is that almost all the energy is discharged as waste heat at low temperature. Double absorption processes based on metallurgical gases, differ from hot-gas plants based on sulphur combustion in that cold feed gases must be heated to the converter-inlet temperature using the energy liberated in the oxidation of sulphur dioxide. See Appendix.

At a feed-gas concentration of 8.5% SO<sub>2</sub> and a dryer inlet temperature of 30-40°C about 2.7GJ of thermal energy is liberated per tonne of sulphuric acid (5.4GJ in the case of sulphuric acid produced from elemental sulphur). This corresponds to a thermal output of 31 Mw for a 1,000t.d<sup>-1</sup> plant. About 45% of the total energy is discharged through the intermediate absorber acid cooling system, 23% through the final absorber acid cooling system and about 22% through the dryer-acid cooling system.

In terms of heat recovery, in a conventional cold-gas double-absorption plant for processing relatively low-grade sulphur dioxide containing feed gases, there is no excess high temperature heat that can be used for the generation of high pressure steam. However, where the sulphuric acid plant is linked to a modern smelter, high SO<sub>2</sub> is available and to increase the output of high pressure steam, low temperature heat from the absorber acid circuits can be used for preheating the boiler feed water.

# 2.7 Gas Cleaning of Metallurgical Off-gases

Gases containing SO<sub>2</sub> from all metallurgical processes are cleaned before the contact process to remove the following components:-

- Fumes or aerosols formed by condensation of volatile metal components such as Zn, Pb, Sb, Bi, Cd and their chlorides, sulphates and oxides
- Volatile gaseous metals such as As, Se, Hg and their compounds
- Gaseous non-metallic compounds such as HF, HCl, SO<sub>3</sub>, CO

After cleaning, small amounts of impurities are absorbed in sulphuric acid or emitted with the tail gas through the stack. CO is oxidised to  $CO_2$  in the contact process and gases from combustion processes also contain  $CO_2$ .

Table 5 shows the different metallurgical off-gases, the main disposals and the method of cleanup.

| Off-gas from   | Main disposal | Cleanup system                                      |
|----------------|---------------|-----------------------------------------------------|
| "CuS" smelters | Hg, HF        | ESP, Gas scrubber with $HgCl_2$ or $Na_2S_3O_3/HgS$ |
| "PbS" smelters | Hg            | ESP, Gas scrubber with HgCl <sub>2</sub>            |
| "ZnS" smelters | Hg            | ESP, Gas scrubber with HgCl <sub>2</sub>            |
| "Ni" smelters  | Se            | Gas scrubber                                        |

Table 5 Disposal and Clean-up of Metallurgical Off-gases

# 2.8 Handling of Waste Gas/Stack Height

The height of the exhaust stack determines the maximum  $SO_2/SO_3$  concentration value in the ambient air surrounding a sulphuric acid plant. It is also well known that this concentration is widely fluctuating in space and time due to the thermo-aerodynamic conditions of the low-level atmosphere (0 to 500m). These conditions can vary due to the following factors:-

- Vertical temperature and humidity structure
- Wind speed and direction
- Turbulence of the atmosphere
- Sunshine intensity etc.

Proposals for stack heights could consequently have a questionable character.

For the time being, every Member State has its own method for estimating the height of stacks. In the future, it is foreseen that a specific Technical Note on this topic will be published by the European Commission.

# 3. PRESENT CONSUMPTION/EMISSION LEVELS

# 3.1 Consumption of Energy/Raw Materials/Water Input and Waste

The Appendix gives typical inputs/outputs for different types of a 4-bed contact process per tonne 100%  $H_2SO_4$ .

The types of process are:-

- Sulphur-burner, pyrites roasting, "CuS" roasting, "ZnS" roasting, "PbS" roasting
- H<sub>2</sub>SO<sub>4</sub> regeneration, "FeSO<sub>4</sub>" roasting

# 3.2 Emission Levels

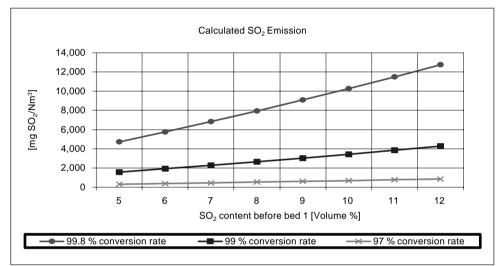



Figure 2 – Calculated SO<sub>2</sub> Emissions in mg.Nm<sup>-3</sup> in Relation to the SO<sub>2</sub> Content before Bed 1.

# 3.3 Environmental Aspects

#### 3.3.1 Emissions into air/water, waste generation

# 3.3.1.1 Emissions into air CO<sub>2</sub>, SO<sub>x</sub>, NO<sub>x</sub>

#### 3.3.1.1.1 SO<sub>3</sub> emissions

#### **Origins:-**

- Bad absorption efficiency
- Vapour pressure of sulphuric acid/oleum

#### Minimisation techniques:-

Absorption improvements:-

- Absorbing tower design (velocity)
- Acid distribution (flow and repartition)
- Packing efficiency
- Acid temperature (vapour pressure)

# 3.3.1.1.2 H<sub>2</sub>SO<sub>4</sub> emissions

#### **Origins:-**

- Tower design
- Mist formation
- Vapour pressure

#### Minimisation techniques:-

- Droplet carry-over
- Absorbing tower design (gas velocity, acid distribution)/demisters (mesh pads or candles)
- Mist filter
- Process control:-
  - ESP efficiency
  - Drying tower efficiency
  - Gas temperature upstream absorption
  - NO<sub>X</sub> content in the gases
  - Acid temperature at the bottom of absorption tower
  - Acid vapour pressure (temperature)
  - High Efficiency demisters  $\longrightarrow$  50mg.Nm<sup>-3</sup> (particles > 0.5 $\mu$ )

# 3.3.1.1.3 SO<sub>2</sub> emissions

#### **Origins:-**

- Bad conversion efficiency
- Gas bypassing (acid cross bleed or convector)

## Minimisation techniques without additional process:-

Gases:-

- Composition (O<sub>2</sub>, SO<sub>2</sub>, inerts...)
- Velocities through catalyst and repartition
- Cooling quality (heat exchangers or air cooling)
- Operating pressure
- Acid cross-bleeds (SO<sub>2</sub> stripping, SO<sub>2</sub> gases drying processes)
- Temperature

#### Catalyst:-

- Converter design
- Number of beds
- Catalyst quality and quantity
- Converter loading

### SO2-Minimisation techniques with additional process:-

- Without by-product: Single absorption  $\longrightarrow$  double absorption (if gases are higher than 6% SO<sub>2</sub>)
  - SO<sub>2</sub>  $\longrightarrow$  weak H<sub>2</sub>SO<sub>4</sub> possible to recycle: Activated carbon oxidation process/ H<sub>2</sub>O<sub>2</sub> process
- With co- or by-product:-
  - NH<sub>3</sub> scrubbing, Co product  $\longrightarrow$  Ammonium sulphate
  - NaOH scrubbing, Co product  $\longrightarrow$  Sodium sulphate
  - Ca(OH)<sub>2</sub> scrubbing, Co product  $\longrightarrow$  Calcium sulphate (gypsum)
  - Mg(OH)<sub>2</sub> scrubbing, Co product  $\longrightarrow$  Magnesium sulphate
  - Other processes neutralisation absorption, bioconversion exist but are less developed and depend on the specific site

#### 3.3.1.2 Emissions into water

- Energy release from cooling
- Accidental leakage
- Waste water treatment plants must be able to deal with heavy metals
- Emissions of noise by air cooling
- Water treatment for steam production

#### 3.3.1.3 Solid wastes

#### 3.3.1.3.1 Sulphuric acid spent catalysts

Methods for disposing of spent catalyst are:-

- Metal recovery

The vanadium content of the catalysts can be reclaimed for further use. This service is usually provided by the catalyst manufacturer who will have access to a reclamation operation. The metal can be recycled as vanadium salts or as ferrovanadium for steel production.

In all cases of the recycling versions it is very important that the spent catalyst has a low content of arsenic. A typical analysis for spent catalyst:-

- V<sub>2</sub>O<sub>5</sub>: min. 3% weight
- K<sub>2</sub>O: max. 10% weight
- P: max. 0.5% weight

Sn, Pb, As, Sb, Bi, Cu, Zn, Cd, Hg: max. 0.1% weight

- Landfill Disposal:-

Two types of disposal are available

Fixation: The catalyst is 'fixed' in an inert matrix, usually concrete or glass (also known as vitrification) prior to controlled deposit in a suitably licensed landfill site. The fixation process is designed to prevent metals leaching into the landfill site.

Direct landfilling: The catalyst is deposited directly into a suitably licensed landfill site in compliance with national legislation. It is common practice to mix the catalyst with lime to neutralise residual acidity.

#### 3.3.1.3.2 Wastes from packing and lining

Waste from the chemical industry is always handled with care. Waste from sulphuric acid production, packing, lining and scrap-iron is always handled in the same way as waste from other chemical production plants. That means that where it is necessary, the waste is checked for impurities before a decision is made on how to handle it. There are usually no problems in normal sulphuric acid production

#### 3.3.2 Consumption of water/energy and other resources

Sulphuric acid production is one of the few chemical processes where more energy is normally produced than is used in the process. In many cases sulphuric acid plants are used as the energy source for the production processes for other chemicals that require energy. The Appendix shows the energy outputs from different plants.

Sulphuric acid production also has the advantage that there is no formation of carbon dioxide compared with fuel and natural gas and energy is "green" compared to other energy production due to the fact that the energy is a by-product. Overall the process is a net producer of energy, although the amount of recovery is a function of the level of quality of this energy.

#### 3.3.2.1 Consumption of water

All acid plants have measures to control the use of water for cooling and adjusting the concentration in the acid system. The cooling system is normally a closed water circuit or it includes a measurement of the pH before discharge to waste. The use of water in the acid system is important to ensure the right concentration in the absorption tower to prevent acid mist in the stack.

Boiler feed water for steam production requires special pre-treatment depending on the different sources such as ground water or drinking water. Treatments include anion and/or cation exchange and conditioning with ammonia, sodium hydroxide, hydrazine or phosphates. Water quality including pH and conductivity must be fully controlled. About 95% of the water is used for steam production and the remainder of the boiler water which is mostly alkaline can be discharged to drain after neutralisation. In the interests of economy all uncontaminated water condensates should be collected and used for new steam production.

#### 3.3.2.2 Energy consumption

Sulphuric acid production is always a net producer of energy. The quality of the energy produced is a function of site requirements. Examples of the different kinds of energy produced are: steam at different pressures for chemical plants, power generation or city heating; or hot water for use in greenhouses or fish farms.

#### 3.3.2.3 Other resources

Regeneration, recycling and evaporation are different ways to prevent spent acid becoming a waste and a problem for the environment. A sulphuric acid plant to process the tail gas from metal roasting prevents the emission of sulphur dioxide to the atmosphere.

#### 3.3.3 Accidental pollution

There is always a risk of accidental pollution when chemicals are produced and handled. The more common a chemical, the more information is available about the different hazards and the lower the risk of accidental pollution. The highest risk for accidental pollution is during the transportation of the product and that is covered under the different transport regulations such as those of ADR/RID and IMO. There is also a risk of pollution from the storage of sulphuric acid and different plants have different systems to collect leaks and spillages depending on guidelines for the storage of acid.

Gas leaks are not normally a problem as they are handled by various monitoring and control systems, which measure the  $SO_2$  content in the air.

#### 3.3.4 Areas of concern

The most important issue is the transportation of the product and that is covered under the regulations of ADR/RID and IMO. There is a risk to personnel during the loading and unloading of sulphuric acid if it is mishandled. All producers are responsible for the personal safety of their employees and and have different systems of work to ensure proper handling.

#### 3.3.5 Multimedia complexity

Emissions of sulphur dioxide into the air may deposit on the soil and contribute to a lower pH.

 $SO_2$  scrubbing gives rise to a by-product disposal problem which will depend on the type of by-product. For example gypsum may be disposed of to landfill and ammonium sulphate may be sold or recycled.

# 4. CANDIDATE BATS

# 4.1 Available Techniques

The general presentation of the technique of production of sulphuric acid is divided into two parts as the techniques for the conversion of  $SO_2$  to  $SO_3$  and of absorption of  $SO_3$  depend on the concentration of  $SO_2$  in the feed gas entering the installation and on the variability of  $SO_2$  concentration.

## Sources of SO<sub>2</sub>

- Sulphur burning
- Pyrites roasting
- Metal sulphide roasting and smelting
- Sulphuric acid regeneration
- Metal sulphate roasting
- Combustion of H<sub>2</sub>S or other sulphur containing gases
- Other processes

# Sulphuric acid production

Acid production is divided into two different groups depending on the level of  $SO_2$  in the process gas.

Poor gas processes with > 3 Vol. % SO<sub>2</sub>:-

- Single contact process
- Double contact process
- Wet Contact Process (WCP)

Tail gas processes with < 3 Vol. % SO<sub>2</sub>:-

- Modified Lead Chamber Process (MLCP)
- H<sub>2</sub>O<sub>2</sub> process
- Activated Carbon
- Other processes

#### 4.1.1 Overview of techniques applicable to sources of SO<sub>2</sub>

Figures 3.1 to 3.6 in the Appendix detail the characteristics of the principal sources of  $SO_2$  dependent on the different processes. Table 6 gives an overview of techniques that have a positive effect on, that is reduce, the emissions from the manufacture of sulphur dioxide.

| Techniques                                  | Process<br>control | Fuel selection | ESP | Filters | SO <sub>x</sub> |
|---------------------------------------------|--------------------|----------------|-----|---------|-----------------|
| Sulphur burning                             | Х                  |                |     | Х       | Х               |
| Ore roasting/smelting                       | Х                  | Х              | Х   | Х       | Х               |
| H <sub>2</sub> SO <sub>4</sub> Regeneration | Х                  | Х              | Х   | Х       | Х               |
| Sulphate roasting                           | Х                  | Х              | Х   | Х       | Х               |
| Combustion of H <sub>2</sub> S              | Х                  | Х              |     | Х       | Х               |

Table 6 Techniques Reducing the Emissions

#### 4.1.1.1 Combustion of Sulphur

The combustion of sulphur which is obtained either from natural deposits or from de-sulphurisation of natural gas or crude oil, is carried out in one-stage or two-stage sulphur combustion units at between 900 and 1800°C. The combustion unit consists of a combustion chamber followed by a process gas cooler. The SO<sub>2</sub> content of the combustion gases is generally up to 18% by volume and the O<sub>2</sub> content is low (but higher than 3%).

The gases are generally diluted to 10-11% before entering the conversion process. In the inlet gas to the converter the ratio  $SO_2/O_2$  should not be higher than 0.8 to achieve a high conversion efficiency. This means that the highest percentage of  $SO_2$  should not exceed 11% in a 4-bed double contact (no caesium) plant to achieve an average conversion rate of 99.6%.

#### 4.1.1.2 Pyrites roasting

Fluid-bed roasters are the preferred equipment for pyrites roasting. They are much superior to other types of equipments in terms of process technology, throughput rates and economy. Two by-products, iron oxide and energy are also produced when roasting pyrites to get  $SO_2$  gas. 1 tonne of acid needs 0.5 tonnes of pyrites. The  $SO_2$  content of the gases is generally between 6 and 14% with zero  $O_2$  in the gas. The  $SO_2$  content in the gases is slightly variable over time due to the heterogeneous character of the raw material (pyrites).

The gases are always treated in 3-4 cleaning steps using cyclones, bag filters, scrubbers and electrostatic precipitators with a high efficiency. Waste water from the scrubbing must be treated before discharge. The clean gas is diluted with air to 6-10% and dried before entering the conversion process.

#### 4.1.1.3 Metal sulphide roasting/smelting

Many metal sulphides (other than pyrites) produce gases containing  $SO_2$ , when roasted during metallurgical processes. It is necessary to distinguish the main ores as indicated in Table 7.

|                                         |                   | -                             |                                    |                                     |
|-----------------------------------------|-------------------|-------------------------------|------------------------------------|-------------------------------------|
| Metal Sulphide                          | SO <sub>2</sub> % | Raw Gases<br>O <sub>2</sub> % | Process Gases<br>SO <sub>2</sub> % | Variability in time                 |
| ZnS containing ores                     | 6-10              | 6-11                          | 6-10                               | Relatively low                      |
| CuS containing ores                     | 1-20              | 8-15                          | 1-13                               | Can be very high                    |
| PbS containing ores                     |                   |                               |                                    |                                     |
| - sintering                             | 2-6               | ≈ 15                          | 2-6                                | Relatively high                     |
| <ul> <li>other lead smelters</li> </ul> | 7-20              | ≈ 15                          | 7-13                               | Low to very high<br>(Batch process) |

Table 7 Principal Metal Sulphides Producing SO<sub>2</sub>

The concentration of  $SO_2$  in gases entering an acid plant determines the amount of gas that must be treated per tonne of fixed sulphur. The size of the plant and the cost of fixing the sulphur increase as the concentration of  $SO_2$  diminishes. Furthermore, there is a minimum concentration of  $SO_2$  that can be treated without increasing the number of stages in the plant.

For copper, it is typical to find fluctuations in the concentration of  $SO_2$  in converters and also important fluctuations in the gas flow. The reason for these effects is that about 30% of converter operating time is used for charging and slag tapping.

#### 4.1.1.3.1 Copper production

Pyrometallurgical copper extraction is based on the decomposition of complex iron-copper sulphide minerals into copper sulphides, followed by selective oxidation, separation of the iron portion as slag, and final oxidation of the remaining copper sulphide. These steps are known as roasting, smelting and converting (the present-day tendency is to carry out the first two in a single process). The Flash Smelting process is currently one of the most widely used pyrometallurgical processes.

Converters are used extensively to blow air, or oxygen-enriched air, through the copper matte to produce blister copper. Virtually all the sulphur from the concentrates is converted to  $SO_2$ . A concentrate of CuFeS<sub>2</sub> produces almost one tonne of sulphur (2 tonnes of  $SO_2$ ) per tonne of copper extracted. To avoid air pollution, these gases are processed to obtain sulphuric acid, oleum or liquid  $SO_2$ .

The development of copper recovery processes has been dominated by two objectives. One is to economise on energy, making the maximum use of reaction heat obtained from the processes. The other has been the need to decrease the gas volume and increase the concentration of  $SO_2$  in metallurgical gases by the use of oxygen enrichment, to improve environmental controls. The gas purification follows, during which the gas is cooled and the dust and contained  $SO_3$  are eliminated by scrubbing, cooling and electrostatic cleaning. After that, the clean  $SO_2$  gases are converted to sulphuric acid through the contact process.

#### 4.1.1.3.2 Zinc production

Zinc production is based on the treatment of zinc concentrates, mainly sulphides, with an average composition of sulphide sulphur: 30-33%, Zn: 50-60%, Fe: 1-12%, Pb: 0.5-4% and Cu: 0.1-2%. These concentrates are desulphurised in a first step.

After the desulphurisation step the product (calcine) is treated for zinc recovery mainly in a hydrometallurgical process and for a minor part also in a pyrometallurgical process. The hydro way consists of leaching this calcine, purifying the enriched zinc solution and subsequently recovering pure zinc metal by electrolysis. In the pyrometallurgical way, conditioned calcine is reduced in a shaft furnace (ISF) and the zinc vapours are condensed in a splash condenser. This crude zinc is further refined in a distillation column.

More specifically, the preliminary desulphurisation step takes place mainly in a fluidised bed roaster or alternatively in a sinter plant. The  $SO_2$  content of the gases is about 5 to 10%. After heat recovery in a waste heat boiler with the production of steam, the gases are dedusted by electrostatic precipitation (ESP), cooled down in scrubbing towers and subsequently demercurified in a specific scrubbing process. The cleaned  $SO_2$  gases are treated and converted to sulphuric acid in a double contact process in modern plants or in a single contact process for older plants.

#### 4.1.1.3.3 Lead production

Primary lead is produced predominantly from lead and lead/zinc concentrates and to a smaller extent from other sources, such as complex lead/copper concentrates. Concentrate compositions may therefore vary over a rather wide range: 10-80% Pb, 1-40% Zn, 1-20% Cu, 1-15% Fe, 15-35% S. Somewhat different processes have been developed and are used for an optimum recovery of the various metals present in the feed.

Whichever smelting technique is used, desulphurisation is always one of the objectives of the first treatment stages. It is carried out on belt sinter machines in those cases where a shaft furnace is the actual smelting step, or in flash or bath smelting furnaces in the other processes.

From this variety of feed materials and consequently of techniques, it should be clear that the characteristics of the  $SO_2$ -containing gas will differ markedly from case to case. From continuous operations, such as sinter machines, the  $SO_2$ -concentration can be kept fairly constant and depending on the actual feed mix it can be between 6 and 9%. From batch operations, it will vary between 0 and 15%, depending on the process stage. The average concentration may be between 2.5 and 10%, depending on the actual feed mix and the applied technique.

The gas cleaning circuit will always include ESP and scrubbers. Energy recovery can be practised in some cases of bath smelting but a specific mercury removal step, on the gas or on the acid, may be necessary in others. The double absorption process is largely used, particularly when  $SO_2$  concentrations are high and constant. When low and very varying  $SO_2$  concentrations are inevitable, or where those streams cannot be integrated in more steady gas streams from other processes on the site, single absorption is more appropriate.

#### 4.1.1.4 Regeneration of sulphuric acid

Thermal decomposition of spent sulphuric acids to give sulphur dioxide is achieved in a furnace at temperatures around 1,000°C. Spent acids come from processes where  $H_2SO_4$  or oleum is used as a catalyst (alkylation, nitration, sulphonation etc.) or from other processes where  $H_2SO_4$  is used to clean, dry and remove water.

Gas phase thermolysis of sulphuric acid is represented by the overall equation:-

$$H_2SO_4 \longrightarrow SO_2 + H_2O + \frac{1}{2}O_2 \qquad \Delta H = +202 \text{ kJ.mol}^{-1}$$

Spent acids are atomised in very small droplets to achieve a good thermal decomposition. Energy is provided by the organics from the spent acids and by additional energy from natural gas, fuel oil or coke. Preheating the combustion air reduces the amount of fuel needed. Furnaces can be horizontal (fixed or rotating) or vertical.

The SO<sub>2</sub> content in the gases mainly depends on the composition of the spent acids. The water and organics content affect the gas composition which can vary from 2 to 15%. Sulphur, pure or waste, can generally be added to adjust the SO<sub>2</sub> content and to try to avoid large variations. The most part of the energy from the combustion gases is recovered as steam in a Waste Heat Boiler. Downstream, the gases are cleaned, demisted and dried before going to the converter. The O<sub>2</sub>/SO<sub>2</sub> ratio is important to get a conversion rate of SO<sub>2</sub> to SO<sub>3</sub> which is as high as possible. Upstream of the converter, the gases are reheated to the ignition temperature through gas/gas heat exchangers using the conversion heat. A double absorption process can be used only if the SO<sub>2</sub> content of the gases is high enough (about 8%) at the converter inlet.

Conversion rates:-

Single absorption

| $SO_2$ content at the converter inlet     | 8%       | with $O_2/SO_2$ ratio of | 1.1: <b>98%</b>       |
|-------------------------------------------|----------|--------------------------|-----------------------|
| $SO_2^{-}$ content at the converter inlet |          |                          |                       |
| $SO_2^-$ content at the converter inlet   | below 5% | with $O_2/SO_2$ ratio of | 1.1: <b>96 to 97%</b> |

Double absorption

When achievable, double absorption leads to conversion rates from 99 to 99.6%

Double absorption is considered as the BAT for new plants. For existing plants, a single absorption can be advantageously combined with an ammonia scrubber, the by-product obtained being either sold on the market or recycled in the furnace.

#### 4.1.1.5 Sulphate roasting

Decomposition of sulphates, for example iron sulphate, is carried out in multiple-hearth furnaces, rotary kilns or fluid bed furnaces at over 700°C with the addition of elemental sulphur, pyrites, coke, plastic, tar, lignite, hard coal or oil as fuel compensator. The SO<sub>2</sub> content of the gases obtained is dependent on the type of fuel. After cleaning and drying, the SO<sub>2</sub> content is about 6% and the variability in time of the SO<sub>2</sub> content is high. During the first step, the heptahydrate is dehydrated at 130-200°C by flue gases in spray dryers or fluid-bed dryers to a monohydrate or mixed hydrate. In a second step, the material is decomposed at about 900°C.

The gases thus obtained contain about 7% by volume of sulphur dioxide. Today it is common practice for ferrous sulphate to be decomposed in a fluid-bed pyrites roasting furnace at 850°C or more. Elemental sulphur, coal or fuel oil may be used as supplementary fuels. The sulphur dioxide containing gas leaving the furnace is cooled in a waste heat boiler to about 350-400°C and is subsequently passed to the gas cleaning system. The cleaned gases are fed to the sulphuric acid plant.

A mixture of sulphates (metallic or ammonium) and eventually sulphuric acid, resulting from the concentration of acidic wastes from titanium oxide production or from organic sulphonations, can similarly be processed in a fluid bed reactor or a furnace. In individual cases, ferrous sulphate is also decomposed in multiple-hearth furnaces with flue gases from fuel oil or natural gas combustion.

#### 4.1.1.6 Combustion of sulphur containing gases

Combustion of hydrogen sulphide  $(H_2S)$  or similar gases is achieved in a fixed furnace at about 1000°C. Combustion heat is higher than with sulphur combustion. Two different ways are used to process the gases to SO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>:-

- A dry process where the water is eliminated by condensation and then drying and the gases are processed as in the spent acid regeneration process
- A wet process in which the gases are processed with all the water and steam. At the end of the process, the absorption tower is replaced by a condenser where the control of temperature allows the production of 96% H<sub>2</sub>SO<sub>4</sub>, the most part of water being discharged to the atmosphere

The conversion rates are comparable to those for sulphur burning plants.

#### 4.1.1.7 Tail gas scrubbing

 $SO_2$  abatement by scrubbing consists of a chemical reaction between  $SO_2$  and a basic liquid solution. This operation is achieved generally in a gas/liquid contact packed tower or a scrubber. A liquid circulation loop is operated from the bottom to the top of the tower, where the liquid is distributed above the packing.

The gases enter the bottom part of the tower, contact and react with the basic liquid solution on the packing. The  $SO_2$  content in the outlet gases is achieved by controlling the pH of the solution and by adding more or less basic concentrated solution into the liquid circulation loop. One or two reaction steps may be needed depending on the inlet and outlet  $SO_2$  content and the basic product used (ammonia, caustic soda, magnesium or calcium hydroxides, etc.). The resulting by-products (ammonium-, sodium-, magnesium-, or calcium-, sulphate, sulphite and bisulphite) can be sold or may have to be disposed of.

## 4.1.2 Overview of techniques applicable to sulphuric acid production

This section refers to existing plants which may (or may not) be up-graded, although not reaching the specifications of new plants.

#### 4.1.2.1 Overview

The six process routes are the principal process routes that are available. The following data on production processes have been presented in detail in the previous paragraphs and are summarised in Table 8 using an  $O_2/SO_2$  ratio of about  $1 \pm 0.2$  (possibly 0.8 to 3).

| NEW PLANTS                            | SO <sub>2</sub> content in<br>feed gas<br>(% vol) | Conversion rate<br>daily average<br>(%) | State of the art<br>emission for new plants SO <sub>3</sub><br>[2] |
|---------------------------------------|---------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|
| Single contact                        | 6-10<br>3-6                                       | 98.5% [4]<br>97.5% to 98.5%             | 0.4kg.t <sup>-1</sup> [5]                                          |
| Double contact                        | 6-12                                              | 99.6% [1]                               | 0.1kg.t <sup>-1</sup> [5]                                          |
| Wet contact process                   | 0.05-7                                            | 98.0%                                   | < 10ppmv SO <sub>3</sub>                                           |
| Process based on NO <sub>x</sub>      | 0.05-8                                            | nearly 100% [3]                         | No data                                                            |
| H <sub>2</sub> O <sub>2</sub> Process |                                                   | > 99.0%                                 | Very low                                                           |

Table 8 Sulphuric Acid Production Processes for New Plants

- [1] when sulphur burning
- [2]  $SO_3 + H_2SO_4$  expressed as  $SO_3$
- [3] possible emissions of NO<sub>x</sub>
- [4] for existing plants the conversion rate is 98%
- [5] per tonne of acid produced

Table 9 gives an overview of techniques that have a positive effect on, that is reduce, the emissions from the manufacture of sulphuric acid

Table 9 Techniques Reducing the Emissions

| Techniques                                     | Process<br>control | Single<br>contact | Double<br>contact | Catalysts | Filters | SO <sub>x</sub> | NO <sub>x</sub> |
|------------------------------------------------|--------------------|-------------------|-------------------|-----------|---------|-----------------|-----------------|
| Sulphur burning                                | Х                  |                   | Х                 | Х         | Х       | Х               | Х               |
| Ore roasting                                   | Х                  | Х                 | Х                 | Х         | Х       | Х               |                 |
| H <sub>2</sub> SO <sub>4</sub><br>regeneration | х                  | х                 | х                 | х         | Х       | х               | х               |
| Sulphate roasting                              | Х                  |                   | X                 | Х         | Х       | Х               |                 |
| Incineration of H <sub>2</sub> S               | Х                  | Х                 | Х                 | Х         | Х       | Х               | Х               |

#### 4.1.2.2 Single contact process (single absorption)

The contact process without intermediate absorption is only used in new plants to process  $SO_2$  gases with low and widely varying  $SO_2$  contents. The  $SO_2$ -containing gases, which have been carefully cleaned and dried, are oxidised to sulphur trioxide in the presence of catalysts containing alkali and vanadium oxides. The sulphur trioxide is absorbed by concentrated sulphuric acid in absorbers, preceded by oleum absorbers where necessary. In the absorbers, the sulphur trioxide is converted to sulphuric acid by the existing water in the absorber acid. The absorber acid is kept at the desired concentration of approximately 99% by wt. by adding water or dilute sulphuric acid as shown in Figure 3.

The single contact process is generally used with inlet gases containing 3 to 10% SO<sub>2</sub>. In new plants, the conversion efficiency is about 98.5% as a daily average and can be upgraded to 99.1% depending on good design and the use of specially adapted catalyst doped with caesium. In existing plants, it is difficult to obtain better than 98.0% conversion but, in some existing plants, a conversion efficiency of 98.5% has been achieved.

#### 4.1.2.3 Double contact process (double absorption)

In the double contact process, a primary conversion efficiency of 80% to 93%, depending on the arrangement of the contact beds and of contact time, is obtained in the primary contact stage of a converter preceding the intermediate absorber. After cooling the gases to approximately 190°C in a heat exchanger, the sulphur trioxide already formed is absorbed in the intermediate absorber in sulphuric acid with a concentration of 98.5 to 99.5% by weight. The intermediate absorber is preceded by an oleum absorber if required. The absorption of the sulphur trioxide brings about a considerable shift in the reaction equilibrium towards the formation of SO<sub>3</sub>, resulting in considerably higher overall conversion efficiencies when the residual gas is passed through one or two secondary contact beds. The sulphur trioxide formed in the secondary stage is absorbed in the final absorber.

The double contact processes including double absorption are shown in Figures 4, 5 and 6 with the different raw materials – sulphur, non-ferrous ores and pyrites. In general,  $SO_2$  feed gases containing up to 12 Vol.%  $SO_2$  are used for this process. The conversion efficiency in new plants can reach about 99.6% as a daily average in the case of sulphur burning.

#### 4.1.2.4 Wet contact process (WCP)

This process is not sensitive to the water balance and has been used to treat off-gas from a molybdenum smelter as well as being installed in two desulphurisation plants (one in a Flue Gas Desulphurisation system, the other on an industrial boiler) currently under construction. An earlier version of the WCP technology was used to treat lean hydrogen sulphide gases. For all gas feeds, sulphurous components in the gas are converted to sulphuric acid without the need to dry the gas first. [33].

When treating roaster off-gas, the off-gas is cleaned in a standard purification system and then fed through a blower, which provides the pressure necessary to overcome the pressure



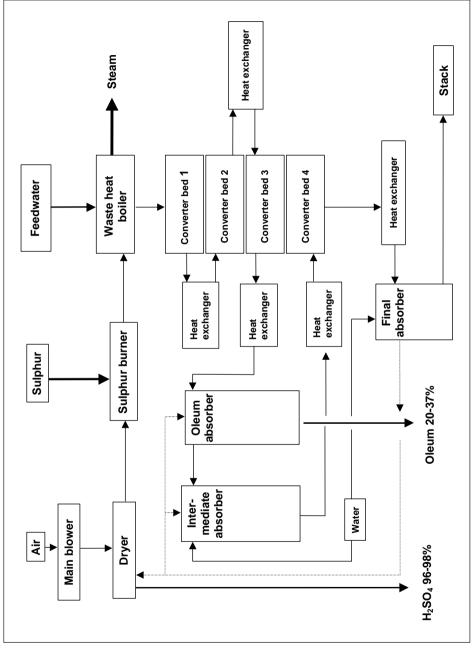



Figure 4 – Sulphuric Acid Plant (Double Catalysis) Based on Sulphur Combustion.

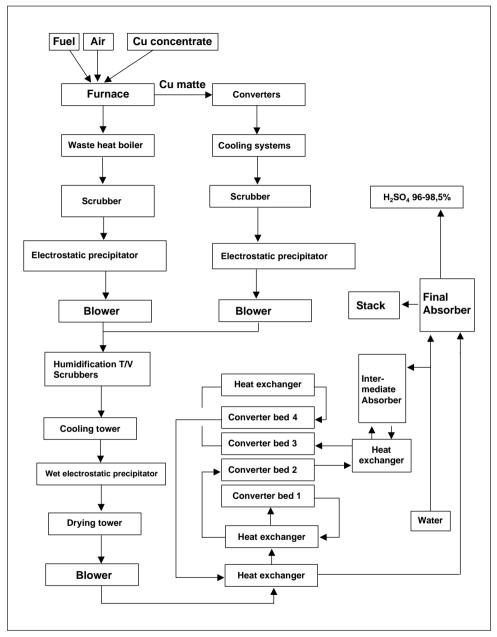



Figure 5 – Sulphuric Acid Plant (Double Catalysis) Based on Non Ferrous Ores.

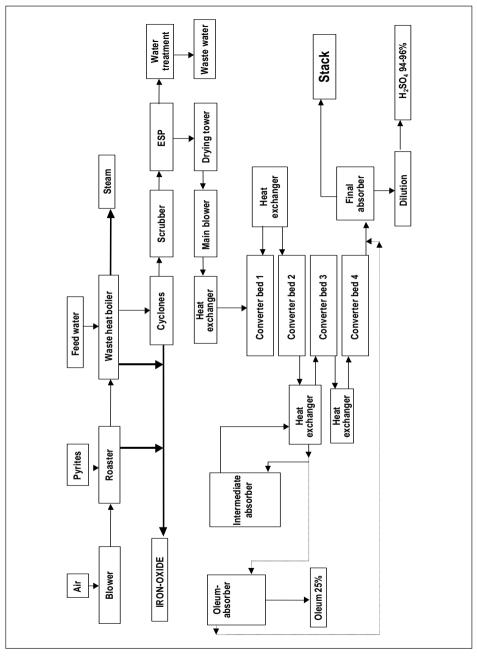



Figure 6 – Typical Layout of a Sulphuric Acid Plant (Double Catalysis) Based on Pyrites.

drop across the system. The gas is preheated initially in the tower and, secondly, in a heat exchanger. It is next fed to a converter, where sulphur dioxide is oxidised over a catalyst to sulphur trioxide. A cooled reactor or an adiabatic reactor is used, depending on the conditions.

Sulphur trioxide-containing gas is then cooled in a gas-gas heat exchanger. Consequently, part of the sulphur trioxide reacts with the water vapour in the gas to form sulphuric acid vapour. Finally, the sulphuric acid vapour is condensed and concentrated, without acid mist formation, in a multi-tube falling film condenser. Cooling is provided by the cold feed gas supplied to the shell side.

The only utilities required are cooling water for the acid coolers, electricity for the blower and fuel to enable autothermal operation if the feed gas contains below about 1.5-2.0% SO<sub>2</sub>. The conversion efficiency is about 98.5% as a daily average.

#### 4.1.2.5 Pressure process

As the oxidation of  $SO_2$  is favoured by pressure, Pressure Contact Processes have been developed in which the sulphur combustion, sulphur dioxide conversion and sulphur trioxide absorption stages are effected at elevated pressure. Several parameters can influence the conversion efficiency by modifying the chemical equilibrium. Pressure is one of these parameters and this displaces the equilibrium to the right. One plant in France, a double-absorption plant with a capacity of 550-575t.d<sup>-1</sup> of H<sub>2</sub>SO<sub>4</sub>, has been designed with the pressure process in the early 1970s and is still in operation. Usual sulphuric acid processes are operated at pressures in the range of 0.2 to 0.6bar.

Two special advantages have been claimed for the pressure contact process compared with the conventional double-absorption process:-

- The position of the chemical equilibrium in the sulphur dioxide oxidation reaction is more favourable, allowing a higher conversion efficiency to be attained with a reduced amount of catalyst. The plant is reported to have achieved 99.80-99.85% conversion. The tail gas sulphur dioxide content is reported to be reduced to about 200-250ppm SO<sub>2</sub>. However, the high temperatures in the sulphur furnace increase the rate of formation of nitrogen oxide
- Smaller equipment can be used because of the lower operating volumes of the converter gases. This reduces material and site area requirements and raises the capacity limit of shop-fabricated equipment. The resulting capital cost savings are said to be about 10-17% in comparison with current double-absorption plants. However, in some countries these savings would be nullified by the cost of conforming to the requirements for extra wall thickness and higher-grade materials of construction laid down in the safety regulations relating to pressure vessels

The principal disadvantages of the pressure contact process compared with the conventional double-absorption process is that it consumes more power and produces less steam.

#### 4.1.2.6 Other processes

Other processes are defined as processes which yield sulphuric acid but which are not economically viable for large scale production for different reasons.

#### 4.1.2.6.1 Unsteady state oxidation process

This new method of  $SO_2$  oxidation is based on a periodic reversal of the direction of the reaction mixture flow over the catalyst bed. The process was developed at the Institute of Catalysis of the former USSR. Basically a large bed of catalyst is used as both a reversing, regenerating heat exchanger and as a catalytic reactor for the  $SO_2$  oxidation reaction.

Cold SO<sub>2</sub> gas is fed into the catalyst bed and is heated to catalyst ignition temperature by the heat stored in the bed. At this point the conversion reaction proceeds, producing heat. The heat is absorbed by the catalyst in the bed, increasing its temperature. When the front comes close to the exit side of the bed, the flow through the reactor is reversed. Flow reversals are made every 30-120 minutes. The main advantage of the unsteady state process is that the operating line for the first bed is almost vertical, giving first bed conversion of about 80-90% at a low exit temperature. The process is auto-thermal at low (0.5-3%) SO<sub>2</sub> gas concentrations.

The process is in operation in several plants in Russia and other Eastern European countries.

#### 4.1.2.6.2 H<sub>2</sub>O<sub>2</sub> Process

The conversion of SO<sub>2</sub> to SO<sub>3</sub> can be achieved by the use of H<sub>2</sub>O<sub>2</sub> at a sulphuric acid concentration of 70%. Conversion efficiency is higher than 99% but the cost of H<sub>2</sub>O<sub>2</sub> makes this an expensive process for sulphuric acid production. However, since the process leaves no waste, it is very useful for tail gas scrubbing where especially difficult local conditions cannot tolerate the emission even from an installation as efficient as the best contact plant. The H<sub>2</sub>O<sub>2</sub> is used either directly or is produced by electrolysing H<sub>2</sub>SO<sub>4</sub> to peroxydisulphuric acid in the "Peracidox" process.

#### 4.1.2.6.3 The modified lead chamber process

The Modified Lead Chamber Process is able to treat gases with low  $SO_2$  content (as low as 0.05%) up to 8%. The process is also able to treat gases containing a mixture of  $SO_2$  and  $NO_x$ . From the chemical point of view, the process is a development of lead chamber sulphuric acid technology, in which nitrogen oxides are used to promote sulphuric acid production directly from sulphur dioxide through the formation of an intermediate, nitrosyl sulphuric acid. Widely used in the early 1900s, this technology has been largely superseded by the contact process.

After dust removal and purification, the sulphur dioxide-containing gas is fed through a denitrification system, where final traces of nitrogen oxides remaining in the sulphuric acid are removed. It is then passed through the Glover tower where the bulk of the nitrogen oxides are removed from the sulphuric acid. Sulphur dioxide is then absorbed from the gas stream into sulphuric acid (59 to 66%) in a packed tower. In both the Glover and absorption towers, the gas flow is counter current to the liquid flow. The final step of the process is the removal of

nitrogen oxides from the gas stream by absorption in sulphuric acid (74%), forming nitrosyl sulphuric acid. Absorption is achieved in three stages in a specially designed packed vessel through which the gas flows horizontally. This vessel allows multiple absorption without dead space between stages. (This design is also employed for the final removal of nitrogen oxides from sulphuric acid). The absorber has dividing walls that are permeable to the gas between each stage. Packing is placed between the dividing walls.

Regulation of the NO/NO<sub>2</sub> ratio, which is important for the absorption of nitrogen oxides, is achieved by adjusting the amount of nitrosyl sulphuric acid fed to the Glover tower. If necessary the nitrogen oxide balance is maintained by adding nitric acid to the Glover tower. For SO<sub>2</sub> contents of 0.5 to 8%, the conversion efficiency is about 100% but emissions of NO<sub>x</sub> occur (up to 1g.Nm<sup>-3</sup> of NO + NO<sub>2</sub>).

Since 1974, Ciba-Geigy has been developing such a process specifically designed for processing gases with about 0.5-3% volume  $SO_2$ .

#### 4.2 Environmental Performance

The main pollutants emitted are:-

- SO<sub>2</sub> resulting from incomplete oxidation
- SO<sub>3</sub> resulting from incomplete absorption of SO<sub>3</sub>
- Droplets of H<sub>2</sub>SO<sub>4</sub> resulting from absorption
- H<sub>2</sub>SO<sub>4</sub> vapour from scrubbing

Many other pollutants may be emitted in trace amounts depending on the source of  $SO_2$  and the  $H_2SO_4$  production process. For example:-

- NO and NO<sub>2</sub> from all processes but mainly from those such as the Modified Lead Chamber Process, based on NO<sub>x</sub>
- Heavy metals (for example, mercury) when certain ores are treated

#### 4.2.1 Monitoring of pollution

Two approaches are used to monitor emissions:-

- Monitoring the process: for example, the temperature of contact beds or the SO<sub>2</sub> content entering the contact section and behind the intermediate absorption
- Monitoring of the emissions

#### 4.2.1.1 Monitoring of SO<sub>2</sub> emissions

Continuous emission monitoring equipment for  $SO_2$  is available and suitable for sulphuric acid plants and should be installed on all plants. Dual range instruments are available so that the much higher  $SO_2$  emission concentration during start-up can be monitored as well as the relatively low concentration in the emission during steady operation. Emission monitor records should be retained and the competent authorities should consider the appropriate statistical analysis or reporting which is required.

See References [4], [7], [10], [11] for the analytical methods for the determination of  $SO_2$  and References [8], [9] for on-line sampling and measuring.

#### Measurement problem:-

SO2 concentration; Span 0-1,000 ppm

Matrix: air, H<sub>2</sub>O, H<sub>2</sub>SO<sub>4</sub> [30ppm], NO<sub>x</sub> [50ppm]

Commercially available IR or UV photometers can be used for this range and matrix but IR measurement requires compensation for the water present.

Two kinds of photometer are available:-

- Inline photometers (only IR) are able to measure the gas concentration inside the gas pipeline provided the matrix is transparent for the optics (e.g. no fog)
- Online photometers with sample preparation

The second method is the normal method but suitable materials must be chosen for the sample preparation and the measuring cell because of corrosion.

There are two methods of sample preparation:-

- Hot sample preparation keeping the sample and the whole sampling equipment (filter, pipeline, pump, measuring cell) above the dewpoint (~ 150°C)
- Cold sample preparation using a cooler to dry the sample gas to a fixed dewpoint  $(\sim 5^{\circ}C)$

Any method of SO<sub>2</sub> measurement needs a certain amount of maintenance for high availability and reliability. Appropriate plans with intervals for inspection and service should be made, including information for maintenance in the case of breakdown. The accuracy of the analysers lies between 1 and 2%. The overall precision of a complete system lies between 2 and 5%. Statutory conditions must be observed for the analyser and sampling system in special circumstances such as environmental protection. Concentration values are registered and stored in an additional system such as PCS or a special datalogger.

Provision should be made for zero and calibration checks of emission monitors, and for alternative testing in the event of breakdown or suspected malfunctioning of the monitoring equipment. The regular observation of monitors by plant operators for detecting abnormalities in the process operation is as important an aspect of monitoring as is the compliance function, and should be encouraged by the competent authorities [32].

#### 4.2.1.2 Monitoring of mist emissions in the stack

There is at present no known equipment available for carrying out reliable continuous monitoring of sulphur trioxide. Meanwhile, sulphur trioxide together with sulphuric acid mist can be measured by manual sampling and chemical analysis [4]. The analytical problem of separation between  $SO_3/H_2SO_4$  and  $SO_2$  is well solved by the method of 'Specht' which uses boiling aqueous hydrogen chloride for absorption of  $SO_3/H_2SO_4$ . Sampling points for the above measurements under iso-kinetic conditions should be provided. They must be easily accessible and kept in good condition so that they can be used at very short notice. Sealable openings 20 to 50mm diameter are generally considered as suitable, provided that a sampling probe can be inserted into the exhaust gas stream, except in cases when standardised methods require the use of larger openings.

## 4.2.2 General techniques

#### 4.2.2.1 Process control optimisation

Operational controls should include means for:-

- Warning of absorber acid feed failure
- Warning of absorber acid feed over-temperature and controls of temperature along the conversion tower
- Indication of sulphur feed rate and air flow rate
- Detection of acid leaks in acid coolers (pH-meter) and controlling the level of the acid reservoir
- Acid-concentration > 98.5%
- Emergency plant trips
- pH-control on cooling water systems

To aid start-up the following will be necessary:-

- Efficient catalyst preheating facilities, vented to the chimney. At least, two catalyst stages must be above "strike" temperature before sulphur dioxide is admitted to contact the catalyst
- Optimisation of absorber acid strength and temperature before sulphur is admitted to the burner
- Use of additional controls to ensure that sulphur cannot enter the system during shutdown
- Before a long shut-down period the catalyst bed should be efficiently purged of SO<sub>2</sub>/SO<sub>3</sub>

## 4.2.2.2 Fuels and raw materials selection

## 4.2.2.2.1 Sulphur

Sulphur with low contents of ash, water and sulphuric acid must be preferred.

#### 4.2.2.2.2 Energy for heating systems

Heating systems are required for the start-up of sulphuric-acid plants. Where direct combustion is applied, low sulphur fuels are preferable.

## 4.2.3 Techniques to control emissions of SO<sub>2</sub>

Table 10 gives an overview of techniques that have a positive effect on, that is reduce, the emissions of  $SO_2$  during the manufacture of sulphuric acid. Most sulphuric acid plants have taken general primary optimisation measures, like process control measures.

| in processes 11% SO                                        |          |                                                  |                                                                            | Cost (in addit<br>basic installat | Additional<br>effects   |                                  |
|------------------------------------------------------------|----------|--------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|-------------------------|----------------------------------|
|                                                            |          | mg SO <sub>2</sub> .Nm <sup>-3</sup><br>tail gas | kg SO <sub>2</sub> .t <sup>-1</sup><br>H <sub>2</sub> SO <sub>4</sub> 100% | Investment                        | Operating               |                                  |
| Contact process                                            |          |                                                  |                                                                            |                                   |                         |                                  |
| Single absorption<br>+ 5 th bed                            | all s.a. | < 5,000                                          | < 10                                                                       | 1 to 3M EUR                       | 0.2 EUR.t <sup>-1</sup> |                                  |
| Double absorption<br>+ 5 th bed                            | all d.a. | < 1,000                                          | < 2.5                                                                      | 1 to 3M EUR                       | 0.2 EUR.t <sup>-1</sup> |                                  |
| Single absorption<br>+ caesium catalyst<br>in the last bed | all s.a. | <4,500                                           | < 9                                                                        | 35k EUR                           | 0                       |                                  |
| Double absorption<br>+ caesium catalyst<br>in the last bed | all d.a. | < 900                                            | < 2.3                                                                      | 35k EUR                           | 0                       |                                  |
| Single to double absorption                                | s.a.     | < 1,000                                          | 2.6                                                                        | 6.5M EUR                          | 3.8 EUR.t <sup>-1</sup> |                                  |
| Tail gas scrubbing                                         |          |                                                  |                                                                            |                                   |                         |                                  |
| Sodium hydroxide                                           | all      | < 200                                            | < 2                                                                        | 6M EUR                            | 4.5 EUR.t <sup>-1</sup> | Sodium salt<br>to be disposed of |
| Ammonium hydroxide                                         | all      | < 200                                            | < 2                                                                        | 6M EUR                            | 4.4 EUR.t <sup>-1</sup> | Ammonium salt to be disposed of  |
| Calcium hydroxide                                          | all      | < 200                                            | < 2                                                                        | 6M EUR                            | 4.0 EUR.t <sup>-1</sup> | Gypsum to be disposed of         |
| Activated carbon                                           | all      | < 1,000                                          | < 2                                                                        | 5.5M EUR                          | 4.0 EUR.t <sup>-1</sup> | Dilute sulphuric acid            |
| Hydrogen peroxide<br>treatment after end<br>absorption     | all      | < 200                                            | <2                                                                         | 4.5M EUR                          | 6 EUR.t <sup>-1</sup>   | Dilute sulphuric acid            |

Table 10 Techniques Having a Positive Effect on Emissions of SO<sub>2</sub>

## 4.2.4 Techniques to control emissions of SO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub>

Table 11 gives an overview of techniques that have a positive effect on, that is reduce, the emissions of  $H_2SO_4$  (taken as the sum of  $SO_3$  and  $H_2SO_4$ ) during the manufacture of sulphuric acid. Most sulphuric acid plants have taken general primary optimisation measures, like process control measures.

| Techniques                                                     | Applicability              | Emission Level                                                  | Emission Level                                            |                 | t                      | Additional effects                                                                                                              |
|----------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-----------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                |                            | mg H <sub>2</sub> SO <sub>4</sub> .Nm <sup>-3</sup><br>tail gas | kg.t <sup>-1</sup><br>H <sub>2</sub> SO <sub>4</sub> 100% | Investment      | Operating              |                                                                                                                                 |
| Wire-mesh                                                      | Large droplets<br>(1µ-20µ) | < 100                                                           |                                                           |                 |                        | Not efficient on mists                                                                                                          |
| High<br>efficiency<br>candle type<br>filter after<br>absorbers | 0,1µ to 2µ<br>droplets     | < 50                                                            | < 0.03                                                    | 0.5M EUR        | 30 EUR.y <sup>-1</sup> | <ul> <li>increased energy<br/>consumption</li> <li>production loss</li> <li>capacity loss</li> <li>plume suppression</li> </ul> |
| Scrubbing                                                      | all                        | < 10                                                            | 0.015                                                     | As in table 10. | As in table 10.        | <ul><li>waste generation<br/>as in table 10.</li><li>plume reduction</li></ul>                                                  |

Table 11 Techniques Having a Positive Effect on Emissions of H<sub>2</sub>SO<sub>4</sub>

## 4.3 Economic Performance

The estimated Investment Costs for a 1,000t.d<sup>-1</sup> H<sub>2</sub>SO<sub>4</sub> sulphuric acid process plant are:-

- Double absorption with 11%  $SO_2$ , 4-bed double contact without caesium catalyst: 20 to 30M EUR
- Single absorption with 3-6%  $SO_2$ , 4-bed single contact without caesium catalyst: 18 to 25M EUR

Operating cost:-

The economic considerations are based on a sulphuric acid price between 30 and 60 EUR.t  $^{-1}$  H\_2SO\_4

## 4.3.1 Additional processes

An additional process will be needed if process optimisations are not sufficient to reach the  $SO_2$  emission administrative limit. The "Best Available Technique" for this will mainly depend on the site or company opportunities.

For example:  $NH_3$  scrubbing could be the BAT on a fertilizer site;  $Ca(OH)_2$  scrubbing could be the BAT if gypsum can be used in the plaster or cement industries and double absorption will be the BAT if no by or co-product can be accepted.

## Additional process impacts

Capital costs:-

The following figures can be considered on the basis of a 500t.d<sup>-1</sup>  $H_2SO_4$  production facility, corresponding to an SO<sub>2</sub> reduction of 5t.d<sup>-1</sup> to the atmosphere:-

| Process                                                                                  | Costs    |
|------------------------------------------------------------------------------------------|----------|
| Changing Single to Double Absorption<br>(If the existing converter can be used as it is) | 4.5M EUR |
| H <sub>2</sub> O <sub>2</sub> oxidation process                                          | 3M EUR   |
| - OH scrubbing processes                                                                 | 4M EUR   |

These figures may be modified according to each specific facility.

Operating costs:-

| Type of costs       | Double absorption | H <sub>2</sub> O <sub>2</sub> | – OH scrubbing |
|---------------------|-------------------|-------------------------------|----------------|
| Fixed costs/year    |                   |                               |                |
| Personnel           | 0                 | 1 person                      | 6 persons      |
| Maintenance         | 135k EUR          | 90k EUR                       | 120k EUR       |
| Variable costs/year |                   |                               |                |
| Electricity         | 130k EUR          | 100k EUR                      | 100k EUR       |
| Raw materials       | -60k EUR          | 540k EUR                      | 120k EUR       |
| Co-product disposal | 0                 | 0                             | -10k EUR       |
| Total costs/year    | 205k EUR          | 730k EUR                      | 330k EUR       |

 $\mathrm{SO}_2$  reduction leads to a cost of 110 to 440 EUR for each tonne of  $\mathrm{SO}_2$  abated, excluding depreciation.

In conclusion, double absorption is a suitable way of reduction when:-

- The plant configuration (mainly the converter) and space allows the transformation

- There is no valuable use of any by-product

Depending on the process selected, the  $SO_2$  reduction leads to an additional cost per tonne of  $H_2SO_4$  produced, including depreciation over 10 years, of:-

- Double absorption 3.8 EUR
- H<sub>2</sub>O<sub>2</sub> abatement 6 EUR

- OH abatement (as  $NH_3$ ) 4.4 EUR (for a selling price of the by-product at 0 EUR)

Hypothesis: Estimated price for: Electricity: 38 EUR.MWh<sup>-1</sup>

| $H_2O_2$ :                | 610 EUR.t <sup>-1</sup> (100%) |
|---------------------------|--------------------------------|
| - OH as NH <sub>3</sub> : | 122 EUR.t <sup>-1</sup>        |

# 5. BEST AVAILABLE TECHNIQUES

Article 2.11 in Council Directive 96/61/EC concerning integrated pollution prevention and control says: 'best available techniques' shall mean the most effective and advanced stage in the development of activities and their methods of operation which indicate the practical suitability of particular techniques for providing, in principle, the basis for emission limit values designed to prevent and, where that is not practicable, generally to reduce emissions and the impact on the environment as whole.

Candidate best available techniques are identified and described in Chapter 4. The selection of BAT is made in this Section, based on the information given in Chapter 4 and considering achievable emission levels, the applicability and the cost of the techniques. The present Booklet does not deal in detail with the storage and handling of raw materials (sulphur, pyrites, ore, spent acid, sulphates, etc.) used to produce SO<sub>2</sub>.

Chapter 4 has presented the different sources of SO<sub>2</sub> and the techniques of conversion of SO<sub>2</sub> to SO<sub>3</sub> best adapted to each kind of source. These techniques of conversion have their own typical conversion rate and consequently their SO<sub>2</sub> emission concentration expressed in kg SO<sub>2</sub>.t<sup>-1</sup> H<sub>2</sub>SO<sub>4</sub> or mg SO<sub>2</sub>.Nm<sup>-3</sup> or ppm SO<sub>2</sub>/H<sub>2</sub>SO<sub>4</sub> (measurements of concentration and flow rate).

The process conditions and the SO<sub>2</sub> concentration in the gas entering the converter determine the conversion efficiency which directly influences the SO<sub>2</sub> emission concentration (see Figure 2). The SO<sub>3</sub> and  $H_2SO_4$  content in the tail gases depend on the raw material and the process. The content of gaseous SO<sub>3</sub> and  $H_2SO_4$  mist in the tail gases is essentially a function of the temperature and concentration of the irrigation acid in the final absorber.

The following BATs are presented for new plants due to the fact that it is generally not possible to change the source of  $SO_2$  or to change or modify the conversion process. For existing plants, only tail gas scrubbing can be generally considered as a BAT taking into account that the addition of tail gas scrubbing to a double absorption plant is considered as entailing excessive costs (see 4.3) and could be justified only by severe local considerations.

#### 5.1 BAT for the Different Types of Sulphuric Acid Processes

#### 5.1.1 Sulphur burning

Due to the high concentration of  $SO_2$  and stability over time, the BAT is without doubt the **double contact** process. There are two alternatives to achieve the highest possible conversion efficiency in this process.

- Select a caesium-promoted catalyst with a lower working temperature in one or several layers, usually in the last layer. Four layers are normally sufficient. A caesium-promoted catalyst is about three times more expensive than the usual catalyst
- Increase the catalyst volume with a cheaper normal catalyst in four layers. The better method is to add a fifth layer

In both alternatives a conversion efficiency of 99.6% (daily average except start-up and shut-down conditions) can be achieved in new plants.

#### 5.1.2 Metal sulphide roasting/smelting

#### 5.1.2.1 Pyrites roasting

Although the stability over time is slightly variable, the BAT should be the double contact process with a conversion efficiency of about 99.5 to 99.6% depending on the quality of the pyrites (daily average excluding start-up and shut-down conditions): The same two options are available to achieve the highest possible conversion efficiency as for sulphur burning (see 5.1.1).

#### 5.1.2.2 Zinc roasting

As the range of SO<sub>2</sub> content after possible dilution is about 6 to 13% and the variability over time is low, the double contact process can be used as BAT with a conversion efficiency of about 99.6% (daily average except start-up and shut-down conditions) when using gases with SO<sub>2</sub> content >8%.

#### 5.1.2.3 Copper smelting

When the  $SO_2$  content in gases is high (6-13% after possible dilution) and the variability over time is low, the double contact process can be considered as BAT with a conversion efficiency of about 99.6% (daily average except start-up and shut-down conditions).

When the  $SO_2$  content in gases is low (1-6%) and the variability over time is high, the single contact process can be considered as BAT with a conversion efficiency of about 98.5% (daily average except start-up and shut-down conditions).

When the  $SO_2$  content is 5-10% and the variability over time is high, the double contact process can be considered as BAT with a conversion efficiency of about 99.5% (daily average except start-up and shut-down conditions).

When a plant experiences the full range of variability, the efficiency will vary between 98 and 99.5%. Similar circumstances will permit an achievable  $SO_2$  level, in terms of converter throughput based on 100%  $H_2SO_4$  acid of between 3-6kg  $SO_2$ .t<sup>-1</sup>  $H_2SO_4$  due to fluctuating absorption conditions.

The key to a correct purification of metallurgical gases lies in continuous, stable operation of the purification process, normally in an acid plant. The gas flows, which are susceptible to wide fluctuations in volume and concentration, are to some degree incompatible with this criterion. Fluctuations can be minimised by carrying out the conversion process in various converters, or by mixing the gases with the more concentrated flow coming from the smelting stage. This produces gas flows with a concentration range that is adequate to maintain the autothermal process. This is the procedure followed in modern copper smelters that use Outokumpu flash smelting furnaces and Pierce Smith converters.

#### 5.1.2.4 Lead smelting

In the case of sintering lead ores, the variability is relatively high and SO<sub>2</sub> content can be very low, the single contact process and also the wet process and the process based on NO<sub>x</sub> can be considered as BAT with conversion efficiencies of about 98.5, 98 and 100% respectively. This low or variable SO<sub>2</sub> content is due to a down-draught sintering which limits SO<sub>2</sub> emissions. In other cases (lead smelters), the SO<sub>2</sub> can be much higher and less variable over time. In this case the double contact process can be considered as BAT with a conversion efficiency of about 99.5% (daily average except start-up and shut-down conditions).

It has not been possible to arrive at precise limits for the chosen BAT. Apart from costs, conversions and theoretical considerations and also local regulations need to be taken into account to decide the right BAT. The Technical Note on BAT for heavy metal production covers this point and it is recommended that this document should be consulted on this issue.

#### 5.1.3 Sulphuric acid regeneration

The  $O_2/SO_2$  ratio is important to achieve as high a conversion rate of  $SO_2$  to  $SO_3$  as possible. The gases are reheated to the ignition temperature through gas/gas heat exchangers using the heat of conversion, upstream of the converter. A double absorption process can only be used if the  $SO_2$  content of the gases is high enough (about 8%) at the converter inlet. The conversion rates for different  $SO_2$ -concentrations are shown below:-

#### Single absorption

 $SO_2$  content at the converter inlet8%with  $O_2/SO_2$  ratio of1.1: 98% $SO_2$  content at the converter inletfrom 5 to 8%with  $O_2/SO_2$  ratio of1.1: 97 to 98% $SO_2$  content at the converter inletbelow 5%with  $O_2/SO_2$  ratio of1.1: 96 to 97%

#### **Double absorption**

When achievable, leads to conversion rates from 99 to 99.6%

Double absorption is considered as BAT for new plants. For existing plants, a single absorption can be advantageously combined with an ammonia scrubber, the by-product obtained being either sold on the market or recycled in the furnace.

#### 5.1.4 Metal sulphate roasting

The conclusions are the same as those for sulphuric acid regeneration.

#### 5.1.5 Combustion of H<sub>2</sub>S and other S-containing gases

The conclusions are the same as those for sulphuric acid regeneration.

## 5.2 BAT for Contact Processes

## 5.2.1 In respect of SO<sub>2</sub> emissions

| process<br>type for manufacturing<br>sulphuric acid | range for SO <sub>2</sub> conc. | single<br>absorption                                                                 | double<br>absorption *                                                        | double absorption +<br>Bed 5 or<br>Bed 4 caesium *                 | single absorption +<br>tail gas scrubbing<br>with usage byprod.    |
|-----------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                     | Vol. %<br>SO <sub>2</sub>       | $\begin{array}{c} \text{kg SO}_2.\text{t}^{-1} \\ \text{H}_2\text{SO}_4 \end{array}$ | $\begin{array}{c} \text{kg SO}_2.t^{-1} \\ \text{H}_2\text{SO}_4 \end{array}$ | kg SO <sub>2</sub> .t <sup>-1</sup> H <sub>2</sub> SO <sub>4</sub> | kg SO <sub>2</sub> .t <sup>-1</sup> H <sub>2</sub> SO <sub>4</sub> |
| sulphur burning                                     | 6-12                            | 6.7-13.3                                                                             | 1.5-3.9                                                                       | 1.0-2.6                                                            | <2                                                                 |
| pyrites roasting                                    | 8-10                            |                                                                                      | 2.6-3.9                                                                       | 1.5-3                                                              | <2                                                                 |
| zinc/lead ores roasting                             | 4-9                             | 7-12<br>(4-6% SO <sub>2</sub> )                                                      | 1.7-3.3<br>(6-12% SO <sub>2</sub> )                                           | 1.5-2.5                                                            | <2                                                                 |
| copper smelting                                     | 3-13                            | 6.5-20                                                                               | 1.2-3.3                                                                       | 1.2-2.5                                                            | <2                                                                 |
| lead/copper smelting                                | 2.7                             | 6-10                                                                                 |                                                                               |                                                                    | < 2                                                                |
| organic spent acid regeneration                     | 2-10                            | 10-27                                                                                | 2.6-6.6                                                                       | 1.5-4.5                                                            | <2                                                                 |
| metal sulphate roasting                             | 8-12                            |                                                                                      | 1.6-3.3                                                                       | 1.3-2.6                                                            | -                                                                  |

#### Table 12 BAT Limits for SO<sub>2</sub> Emissions Dependent on Process Type and Absorption Type

\* Not achievable for low  $SO_2$  gas content

## 5.2.2 In respect of $H_2SO_4$ emissions

# Table 13 BAT Limits for $\rm H_2SO_4$ Emissions Dependent on Process Type and Absorption Type

| process<br>type for manufacturing<br>sulphuric acid | range for SO <sub>2</sub> conc. | single<br>absorption                                                                                             | double<br>absorption                                                                                     | double<br>absorption +<br>Bed 5 or Bed 4 caesium                                                    | single absorption +<br>tail gas scrubbing<br>with usage byprod.                                                 |
|-----------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                     | Vol. %<br>SO <sub>2</sub>       | $\begin{array}{c} \text{kg} \ \text{H}_2\text{SO}_4^{-*}\text{.t}^{-1} \\ \text{H}_2\text{SO}_4^{-} \end{array}$ | $\begin{array}{c} \text{kg}\text{H}_2\text{SO}_4^{-*}\text{.t}^{-1}\\ \text{H}_2\text{SO}_4 \end{array}$ | $\begin{array}{c} \text{kg}\text{H}_2\text{SO}_4^{}*\text{.t}^1\\\text{H}_2\text{SO}_4 \end{array}$ | $\begin{array}{c} \text{kg } \text{H}_2\text{SO}_4^{-*}\text{.t}^{-1} \\ \text{H}_2\text{SO}_4^{-} \end{array}$ |
| sulphur burning                                     | 6-12                            | < 0.1                                                                                                            | < 0.1                                                                                                    | < 0.1                                                                                               | < 0.1                                                                                                           |
| pyrites roasting                                    | 8-10                            | 0.2                                                                                                              | 0.2                                                                                                      |                                                                                                     |                                                                                                                 |
| zinc/lead ores roasting                             | 4-9                             | 0.15-0.3<br>(4-6% SO <sub>2</sub> )                                                                              | 0.1-0.16<br>(6-12% SO <sub>2</sub> )                                                                     |                                                                                                     |                                                                                                                 |
| copper smelting                                     | 3-13                            | 0.06-0.35                                                                                                        | 0.05-0.2                                                                                                 |                                                                                                     |                                                                                                                 |
| lead/copper smelting                                | 2.7                             | 0.15                                                                                                             |                                                                                                          |                                                                                                     |                                                                                                                 |
| organic spent acid regeneration                     | 2-10                            | 0.05-0.2                                                                                                         | 0.05-0.2                                                                                                 |                                                                                                     | 0.01-0.03                                                                                                       |
| metal sulphate roasting                             | 8-12                            |                                                                                                                  | 0.065-0.13                                                                                               | 0.065-0.13                                                                                          |                                                                                                                 |

\*  $H_2SO_4 = SO_3 + H_2SO_4$ 

#### 5.2.3 In respect of energy output

| process<br>type for manufacturing<br>sulphuric acid | range for SO <sub>2</sub> conc. | single<br>absorption                              | double<br>absorption                              |
|-----------------------------------------------------|---------------------------------|---------------------------------------------------|---------------------------------------------------|
|                                                     | Vol. % $SO_2$                   | MJ.t <sup>-1</sup> H <sub>2</sub> SO <sub>4</sub> | MJ.t <sup>-1</sup> H <sub>2</sub> SO <sub>4</sub> |
| sulphur burning                                     | 6-12                            |                                                   | 2,500                                             |
| pyrites roasting                                    | 8-10                            |                                                   | 4,500                                             |
| zinc/lead ores roasting                             | 4-9                             |                                                   | 600                                               |
|                                                     |                                 | (4-6% SO <sub>2</sub> )                           | (6-12% SO <sub>2</sub> )                          |
| copper smelting                                     | 3-13                            | 2,000-2,900                                       | 2,000-2,900                                       |
| lead/copper smelting                                | 2.7                             | 900                                               |                                                   |
| organic spent acid regeneration                     | 2-10                            | 2,500                                             | 2,500                                             |

# Table 14 BAT Limits for Energy Outputs Dependent on Process Type and Absorption Type [16]

#### 5.2.4 The role of scrubbing and tail gas processes

Tail gas scrubbing produces sulphites and sulphates which may give rise to waste disposal problems. However, they are applicable if sodium bisulphite, ammonium sulphate or gypsum are produced as marketable by- products near the sulphuric acid plant.

#### 5.2.5 Energy consideration on plants with double and single absorption

Energy has been considered for different SO<sub>2</sub> concentrations, 5% and 11% Vol, and for single/double absorption processes. The starting inlet gas is dry SO<sub>2</sub> gas at 20°C. The end product is sulphuric acid at 98.0% and 25°C. The energy (+ supply, – removal) values are given as  $MJ.t^{-1}$  100%  $H_2SO_4$ .

The temperature point in the region of 180°C is the gas dewpoint. In newer techniques energy is recoverable up to 120°C. Five cases are evaluated:-

- 11% SO<sub>2</sub> Double contact (3+2)
- -11% SO<sub>2</sub> Double contact (2 + 2 + heat recovery system)
- -11% SO<sub>2</sub> Double contact (2 + 2)
- 5% SO<sub>2</sub> Double contact (2+2)
- 5% SO<sub>2</sub> Single contact (4 beds)

#### Table 15 Energy Considerations on Plants with Double Absorption

| $\begin{array}{ c c c c c c } theoret. & MJ.t^{-1} & Energy \\ conv.\% & H_2SO_4 & status \end{array}$ | Energy<br>Level |
|--------------------------------------------------------------------------------------------------------|-----------------|
|--------------------------------------------------------------------------------------------------------|-----------------|

## 11% SO<sub>2</sub> Double contact (3+2)

| Gas inlet $80^{\circ}C \rightarrow 430^{\circ}C$                       |       | 972    | recovering | Heat exchanger         |
|------------------------------------------------------------------------|-------|--------|------------|------------------------|
| bed 1 $430^{\circ}C \rightarrow 582 \rightarrow 430^{\circ}C$          | 48.80 | -462   | recovering | Heat exchanger         |
| bed 2 $430^{\circ}C \Rightarrow 520 \Rightarrow 430^{\circ}C$          | 77.60 | -273   | recovering | Heat exchanger         |
| bed 3 $430^{\circ}C \Rightarrow 478^{\circ}C \Rightarrow 180^{\circ}C$ | 92.84 | -871   | recovering | Heat exchanger         |
| Interabsorption $180^{\circ}C \Rightarrow 80^{\circ}C$                 |       | -1,353 | lost       | Cooling with water/air |
| after interabsorption $80^{\circ}C \Rightarrow 430^{\circ}C$           |       | 799    | recovering | Heat exchanger         |
| bed 4 $430^{\circ}C \Rightarrow 457 \Rightarrow 430^{\circ}C$          | 99.61 | -64    | recovering | Heat exchanger         |
| bed 5 $430^{\circ}C \rightarrow 431^{\circ}C \rightarrow 180^{\circ}C$ | 99.78 | -578   | recovering | Heat exchanger         |
| end absorption $180^{\circ}C \rightarrow 80^{\circ}C$                  |       | -443   | lost       | Cooling with water/air |
| Sulphuric acid 25°C 98%                                                |       | -97    | lost       | Cooling with water     |
|                                                                        |       | -477   | recovering |                        |
|                                                                        |       | -1,893 | lost       | Cooling with water     |

# 11% SO<sub>2</sub> Double contact (2+2 + Heat recovery system)

| Gas inlet $80^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>bed 1 $430^{\circ}$ C $\Rightarrow$ $582^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>bed 2 $430^{\circ}$ C $\Rightarrow$ $520^{\circ}$ C $\Rightarrow$ $180^{\circ}$ C<br>Interabsorption $180^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>after interabsorption $180^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>bed 3 $430^{\circ}$ C $\Rightarrow$ $457^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>bed 4 $430^{\circ}$ C $\Rightarrow$ $457^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>end absorption $180^{\circ}$ C $\Rightarrow$ $180^{\circ}$ C<br>outlet sulphuric acid $25^{\circ}$ C/98% | 48.80<br>77.60<br>99.61<br>99.78 | 972<br>-462<br>-998<br>-659<br>598<br>-192<br>-617<br>-883<br>-112 | recovering<br>recovering<br>recovering<br>recovering<br>recovering<br>recovering<br>lost<br>lost | Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Cooling with water/air<br>Cooling with water |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | -1,357<br>-995                                                     | recovering<br>lost                                                                               | Cooling with water                                                                                                                                                         |

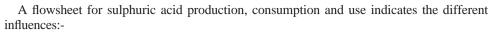
## 11% SO<sub>2</sub> Double contact (2 + 2)

| Gas inlet $80^{\circ}C \Rightarrow 430^{\circ}C$<br>bed 1 $430^{\circ}C \Rightarrow 582^{\circ}C \Rightarrow 430^{\circ}C$<br>bed 2 $430^{\circ}C \Rightarrow 520^{\circ}C \Rightarrow 180^{\circ}C$<br>Interabsorption $180^{\circ}C \Rightarrow 80^{\circ}C$<br>after interabsorption $80^{\circ}C \Rightarrow 430^{\circ}C$<br>bed 3 $430^{\circ}C \Rightarrow 457^{\circ}C \Rightarrow 430^{\circ}C$<br>bed 4 $430^{\circ}C \Rightarrow 436^{\circ}C \Rightarrow 180^{\circ}C$<br>end absorption $180^{\circ}C \Rightarrow 80^{\circ}C$<br>outlet sulphuric acid $25^{\circ}C/98\%$ | 48.80<br>77.60<br>99.61<br>99.78 | 972<br>-462<br>-998<br>-1,167<br>830<br>-192<br>-617<br>-623<br>-103 | recovering<br>recovering<br>loss<br>recovering<br>recovering<br>recovering<br>lost<br>lost | Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Cooling water/air<br>Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Cooling with water/air<br>Cooling with water |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | -465<br>-1,893                                                       | recovering<br>lost                                                                         | Cooling with water                                                                                                                                                            |

| theoret.MJ.t <sup>-1</sup> Erconv.%H2SO4state | rgy Energy<br>us Level |
|-----------------------------------------------|------------------------|
|-----------------------------------------------|------------------------|

#### 5% SO<sub>2</sub> Double contact (2+2)

|       | 946            | recovering                                                                              | Heat exchanger                                                                                                                                                                                                                                                                                       |
|-------|----------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 72.91 | -315           | recovering                                                                              | Heat exchanger                                                                                                                                                                                                                                                                                       |
| 93.52 | -789           | recovering                                                                              | Heat exchanger                                                                                                                                                                                                                                                                                       |
|       | -718           | loss                                                                                    | Cooling water/air                                                                                                                                                                                                                                                                                    |
|       | 875            | recovering                                                                              | Heat exchanger                                                                                                                                                                                                                                                                                       |
| 99.85 | -27            | recovering                                                                              | Heat exchanger                                                                                                                                                                                                                                                                                       |
| 99.88 | -631           | recovering                                                                              | Heat exchanger                                                                                                                                                                                                                                                                                       |
|       | -347           | lost                                                                                    | Cooling with water/air                                                                                                                                                                                                                                                                               |
|       | -43            | lost                                                                                    | Cooling with water                                                                                                                                                                                                                                                                                   |
|       | 60             | recovering                                                                              |                                                                                                                                                                                                                                                                                                      |
|       | -1,108         | lost                                                                                    | Cooling with water                                                                                                                                                                                                                                                                                   |
|       | 93.52<br>99.85 | 72.91 -315<br>93.52 -789<br>-718<br>875<br>99.85 -27<br>99.88 -631<br>-347<br>-43<br>60 | 72.91         -315         recovering           93.52         -789         recovering           -718         loss         875           99.85         -27         recovering           99.88         -631         recovering           -347         lost         -43           60         recovering |


#### 5% SO, Single contact (4 bed)

| Gas inlet $80^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>bed 1 $430^{\circ}$ C $\Rightarrow$ $538^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>bed 2 $430^{\circ}$ C $\Rightarrow$ $461^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>bed 3 $430^{\circ}$ C $\Rightarrow$ $437^{\circ}$ C $\Rightarrow$ $430^{\circ}$ C<br>bed 4 $430^{\circ}$ C $\Rightarrow$ $431^{\circ}$ C $\Rightarrow$ $180^{\circ}$ C<br>end absorption $180^{\circ}$ C $\Rightarrow$ $80^{\circ}$ C<br>outlet sulphuric acid $25^{\circ}$ C/98% | 72.91<br>93.52<br>98.24<br>98.88 | 946<br>-315<br>-89<br>-20<br>-703<br>-347<br>-43 | recovering<br>recovering<br>recovering<br>recovering<br>lost<br>lost | Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Heat exchanger<br>Cooling with water/air<br>Cooling with water |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | -180<br>-390                                     | recovering<br>lost                                                   | Cooling with water                                                                                                                     |

#### 5.2.6 Effect of the emission/consumption level

The production and consumption of sulphuric acid is influenced by:-

- The cost of sulphuric acid
- The cost of transport
- The quality of the different acids relative to the use
- Safety during transport and storage and emissions
- The environmental regulation at the production site
- The future development of regeneration of spent acids



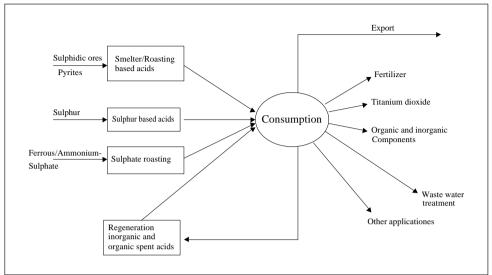



Figure 7 – Flowsheet for Sulphuric Acid Production.

# 5.3 Cross Media Impact

The minimisation of  $SO_2$  emissions to the atmosphere can lead to different impacts, depending on the route of reduction. The metal sulphide sector will emphase that sulphuric acid production is not the prime objective of the process, which remains the production of non-ferrous metal. Sulphuric acid production arises from the necessity to reduce the  $SO_2$  emission.

## 5.3.1 Tail gas scrubbing

Tail gas scrubbing transfers the  $SO_2$  from tail gases to a by-product which can be in solution or solid. Disposal of this by-product on the soil or into water (sea/river) can be considered as a pollution transfer and thus this kind of technique must be associated with recycling or use of the by-product on site or on a customer site over a certain period of time.

## 5.3.2 Caesium catalyst

The use of large amounts of caesium catalyst will have an impact on caesium production and disposal of the spent catalyst.

## 5.3.3 Electricity

Practically all the processes for  $SO_2$  reduction lead to an increase in electricity consumption, mainly due to the pressure drop increase. This point impacts on the need for electricity generation and can have some consequences for  $CO_2$ ,  $SO_2$  and dust emissions from electricity power stations.

## 5.3.4 Cooling water effect to the atmosphere

On a sulphuric acid plant the majority of the conversion energy is recovered as steam, but the absorption energy must be removed either totally or partially and this is generally achieved by water cooling. The cooling water system can be once through when large amounts of water are available, or may use an atmospheric cooling tower. In both cases, the recovered energy is transformed to water evaporation to the atmosphere.

# 6. EMERGING TECHNIQUES

Sulphuric acid had been produced for many years and has the highest world production of any chemical. Most of the developments in production techniques have been made in the last 100 years and there is little scope for improvement. Sulphuric acid production is a mature industry and hence there is little room for further improvement in the process itself. There have been some developments in the materials used in the construction of the plants or their design such as the use of double shell vessels. These are mainly designed to reduce accidental pollution. Other developments have taken place in the following fields:-

- Energy recovery from primary energy
- Product quality with respect to the content of NO<sub>x</sub> and SO<sub>2</sub> which can give rise to emission problems for the customer. NO<sub>x</sub> has to be destroyed and any SO<sub>2</sub> stripped with air
- Demisters with very high efficiency

Currently the need is to optimise sections in the different process stages depending on site requirements and local conditions.

# 7. CONCLUSIONS AND RECOMMENDATIONS

## 7.1 Conclusions

Two different groups of sulphuric acid production plants can be considered:-

- Plants built before 1970
- Plants built after 1970

The first group were designed on the basis of a single absorption process, with associated conversion rates in the range of 96 to 98.5%. The second group operate the double absorption process, with conversion rates in the range of 99 to 99.7%. It has been noticed that large differences exist between these two groups, mainly depending on the upstream process generating the  $SO_2$  – containing gases.

Some processes (sulphur burning for example) generate  $SO_2$  – rich and non variable gases leading to the highest conversion rates. Some others (spent acid regeneration for example) generate  $SO_2$ -lean and/or variable gases with corresponding lower conversion rates. In certain cases it is impossible to use a double absorption process. The conversion efficiency for the metallurgical plants depends on the fluctuations of the  $SO_2$  concentration at the inlet to the plant.

The situation in Western Europe since 1990 is shown in Tables 16 and 17.

| •                    |                        | -                      |                     |      |
|----------------------|------------------------|------------------------|---------------------|------|
| Location             | Company                | Capacity               | Year of<br>start up | Ref. |
| Aviles, Spain        | Asturiana de Zinc S.A. | n.a                    | 1998                | [31] |
| Sweden               | Boliden                | 910t.d <sup>-1</sup>   | 2000                |      |
| Porto Maghera, Italy | Enichem                | 540t.d <sup>-1</sup>   | n.a.                |      |
| Sardinia, Italy      | Sarlux                 | 339t.d <sup>-1</sup>   | n.a.                |      |
| Budel                | Budelco                | 1,185t.d <sup>-1</sup> | n.a.                |      |

Table 16 Project List of "New" Plants in Western Europe

Innovative techniques with environmental performance better than the listed techniques are not possible:-

- A zero emission level is effectively achieved with a conversion rate above 99.9%
- Maximum recovery of energy is technically possible

Sulphuric acid is one of the oldest industrial chemicals. A large number of improvements concerning emissions and energy recovery have been made by the industry over a long period of time. Today all sulphuric acid industries in Western Europe have taken the big responsibility to cut sulphur emissions down to a very low level. In order to improve the environment it is better to invest money to prevent the "Greenhouse" effect for example. There is no carbon dioxide emission when producing energy from sulphur.

| e          |
|------------|
| rop        |
| Eul        |
| m          |
| este       |
| M          |
| l in       |
| 966        |
| <b>r 1</b> |
| after      |
| uilt :     |
| Bu         |
| unts       |
| Pla        |
| of ]       |
| List       |
| 7 L        |
| e 17       |
| ablo       |
| Ë          |

| T anotion                | Duccose true                                                                                                                             | Carta        |                           | Concetter                                                    | Vacuat     | Tuning and                                                               | D of    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|--------------------------------------------------------------|------------|--------------------------------------------------------------------------|---------|
| LOCALIOII                | rrocess type                                                                                                                             | COStS        | company                   | Capacity<br>tH <sub>2</sub> SO <sub>4</sub> .d <sup>-1</sup> | start up   | EJIIISSIOII JEVEI                                                        | IAI.    |
|                          |                                                                                                                                          |              | Rhone-Poulenc             |                                                              |            |                                                                          | (*      |
| Hamburg,<br>Germany      | Cu Smelter acid $(5-8.4\% \text{ SO}_2)$ 5. bed                                                                                          | 1M EUR       | Norddeutsche<br>Affinerie | 918t.d <sup>-1</sup>                                         | 1991       | < 800mg SO <sub>2</sub> .Nm <sup>-3</sup>                                | [25]    |
| Helsingborg,<br>Sweden   | Sulphur burning<br>17.5% SO <sub>2</sub><br>H <sub>2</sub> O <sub>2</sub> scrubbing tower,<br>5. bed                                     | 36M EUR      | Kemira Kemi               | 1,000t.d <sup>-1</sup>                                       | 1992       | <0.9kg SO <sub>2</sub> t <sup>1</sup> H <sub>2</sub> SO <sub>4</sub>     | [26]    |
| Harjavalta,<br>Finland   | Copper and nickel based<br>smelter acid<br>7-12% SO <sub>2</sub>                                                                         | 33M EUR      | Outokumpu<br>extension    | 2,430t.d <sup>-1</sup>                                       | 1995       | < 4,500t SO <sub>2</sub> .y <sup>-1</sup>                                | [27]    |
| Tessenderlo,<br>Belgium  | Sulphur burner,<br>11.5% SO <sub>2</sub> ,<br>heat recovery system                                                                       |              | Tessenderlo<br>Chemie     | 1,000t.d <sup>-1</sup>                                       | 1992       | 300ppm SO <sub>2</sub>                                                   | [28]    |
| Leuna,<br>Germany        | Sulphur burner<br>5. bed                                                                                                                 |              | Domo                      |                                                              | 1996       | 99.9% conversion rate                                                    | [29]    |
| Huelva,<br>Spain         | Cu Smelter acid<br>(5-10.2% SO <sub>2</sub> )                                                                                            | 39M EUR      | Atlantic Copper           | 1,270t.d <sup>-1</sup>                                       | 1996       | >99.6%                                                                   |         |
| Ludwigshafen,<br>Germany | Sulphur burner,                                                                                                                          |              | BASF                      | 900t.d <sup>-1</sup>                                         |            | $0.65 \mathrm{kg} \mathrm{SO}_2.\mathrm{t}^1 \mathrm{H}_2 \mathrm{SO}_4$ |         |
| Le Havre,<br>France      | Sulphur burner,<br>double absorption<br>11.5% SO <sub>2</sub>                                                                            |              | Millennium                | 800t.d <sup>-1</sup>                                         | 1992       | 2.6kg SO <sub>2</sub> .t <sup>1</sup> H <sub>2</sub> SO <sub>4</sub>     |         |
| Huelva, Spain            |                                                                                                                                          |              | Fertiberia                | 2,400t.d <sup>-1</sup>                                       | 2000       |                                                                          |         |
| Worms,<br>Germany        | Spent acid regeneration; $H_2SO_4$ (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>                                                       | 53M EUR      | Rhöm GmbH                 | 500t.d <sup>-1</sup>                                         | 1994       |                                                                          | [30]    |
| *) Practice from :       | *) Practice from a large producer: For the Rhone-Poulenc group in Europe, during the last 10 years: 5 plants representating a production | hone-Poulenc | group in Europe. du       | ring the last                                                | 0 vears: 5 | plants representating a pro-                                             | duction |

Tractice from a large producer: For the Knone-Fourier group in Europe, during the last 10 years, 2 plants representating a production capacity about 3,600t.<sup>41</sup> have been transformed or are going to be transformed to achieve the equivalent of Double Absorption process: 2 of them from SA to DA, 3 of them with additional SO<sub>2</sub> abatement.

All new plants with stable and high sulphur dioxide concentrations (> 6%), are built using the double contact process and to high energy standards. Most of the old plants have been improved to a good conversion rate and a high energy standard.

Based on these facts the conclusion is that for gases with 6-12%  $SO_2$  a double absorption process with an average conversion rate of at least 99.6% is achievable. On the other hand for poor gases or fluctuating gases where a double absorption process is not feasible for practical and theoretical reasons, a single absorption process can be considered as BAT. In this case and with optimal design, a conversion rate of 99% can be achieved.

## 7.2 Recommendations

On the basis of 7.1, the following recommendations are made:-

- 1. For new plants, the Double Absorption process has to be considered as the BAT, when achievable. The average conversion rate corresponding to this technique is at least 99.6% for non variable and rich gases (> 6% SO<sub>2</sub>). It is possible to improve this conversion rate by 0.2% by using a caesium catalyst. However, this quite new catalyst is very expensive (3 to 4 times the normal one) and should only be used when local constraints are very severe.
- 2. For plants operating on a Single Absorption process, different ways can be considered:-
  - Caesium catalyst in the last bed (conversion at least 99%)
  - Transforming Single to Double Absorption process
  - SO<sub>2</sub> abatement by scrubbing with a neutralising compound
  - $SO_2$  abatement with hydrogen peroxide  $H_2O_2$

and the BAT will depend on:-

- Site location and opportunities
- Technical possibilities
- Environmental considerations
- Economic criteria

When achievable on a technical basis, a transformation to Double Absorption process can be considered as the BAT. When transformation from Single to Double Absorption is not possible or when there is the possibility of enhanced value for the by-product resulting from the scrubbing (ammonium, sodium, magnesium or calcium salts or solutions), this can be considered as the BAT for old and new plants. Tail gas scrubbing can be a solution to limit emissions, depending on local legislation, environmental considerations and economic data. In this case, the possible enhanced value for by-products has also to be taken into account and therefore in specific cases only, single absorption can be considered as the BAT.

For tail gas processes with lower sulphur dioxide content or fluctuating concentration it is always a matter of process and each case must be decided for each plant. Depending on the local conditions the recommendation is tail gas treatment with ammonia, calcium hydroxide or sodium hydroxide as described. This level is normally reached by double contact and double absorption but this must always be decided at the plant and, depending on that, all sites have different possibilities due to local conditions.

- 3. For plants where double absorption is not achievable because of the gas quality and where there is no possible use for a neutralisation by-product, processes able to operate on very poor gases have to be considered as the BAT, with the condition of recycling the by-product (usually sulphuric acid more or less diluted) in the plant. These processes can be:-
  - Abatement by scrubbing with H<sub>2</sub>O<sub>2</sub>
  - Activated carbon process

In conclusion to SO<sub>2</sub> emissions minimisation from sulphuric acid plants, for old and new plants the recommendation for the BAT is to take into account:-

- Site opportunities
- The process generating SO<sub>2</sub>

Progress made during the last years in the design of absorption towers, and high efficiency demisting systems for  $SO_3$  and  $H_2SO_4$  mists emissions, allow these emissions to be kept to very low levels, as low as 50mg.Nm<sup>-3</sup> and this could be the BAT.

# 8. REFERENCES

- 1 Ullman's Encyclopedia of Industrial Chemistry. 5th edition, volume A25, 1994. Page 644-647
- 2 Sulphur No. 249, April 1997. Page 53-55.Lisa Connock. What's new for sulphuric acid service?
- 3 NACE International standard "Standard recommended Practice, Design, Fabrication, and Inspection of Tanks for the Storage of concentrated Sulfuric Acid and Oleum at Ambient Temperatures" NACE Standard RP0294-94, Item No. 21063
- 4 VDI-Richtlinien VDI, Measurement of gaseous Emissions, Measurement of the Sulfur-Trioxid Concentration, 2-Propanol Method, VDI 2462 Part 7, (March 1985)
- 5 Sulphur, Sulphur Dioxide and Sulphuric Acid. U.H.F. Sander, H. Fischer, U. Rother, R. Kola B.S.C. Ltd and Verlag Chemie International Inc. (1982)
- 6 VDI-Richtlinien VDI, Emission control Sulphuric Acid Plants, VDI 2298 (September 1984)
- 7 VDI-Richtlinien VDI, Measurement of gaseous Emissions, Measurement of the Sulfur-Dioxide Concentration, H<sub>2</sub>O<sub>2</sub> Thorin method, VDI 2462 Part 8 (March 1985)
- 8 VDI-Richtlinien VDI, Messen der Schwefeldioxid-Konzentration, Leitfähigkeitsmeßgerät Mikrogas-MSK-SO<sub>2</sub>-E1, VDI 2462 Blatt 5 (Juli 1979)
- 9 VDI-Richtlinien VDI, Messen der Schwefeldioxid-Konzentration, Infrarot Absorptionsgeräte UNOR 6 und URAS 2, VDI 2462 Blatt 4 (August 1975)
- 10 VDI-Richtlinien VDI, Messen der Schwefeldioxid-Konzentration, Wasserstoffperoxid-Verfahren, VDI 2462 Blatt 2/3 (Februar 1974)
- 11 VDI-Richtlinien VDI, Messen der Schwefeldioxid-Konzentration, Jod-Thiosulfat-Verfahren, VDI 2462 Blatt 1 (Februar 1974)
- 12 Sulphur No. 251, Juli-August 1997, Page 55-64, Lisa Connock, "Addressing the problem of spent acid"
- 13 Ullmann's Encyclopedia of Industrial Chemistry. Sixth Edition, 1998 Electronic Release, SULFUR-Commercial Grades and Forms (Wolfgang Nehb, Karel Vydra), page 1-59, 1998 Wiley-VCH, D-69451 Weinheim, Germany
- 14 Sulphur No. 219, March-April 1992, Page 26-39, "Converter design for SO<sub>2</sub> oxidation"
- 15 Ullmann's Encyclopedia of Industrial Chemistry. Vol. A 25, Hermann Müller, "Sulfur Dioxid", page 569-612, 1994 VCH Verlagsgesellschaft
- 16 Ullmann's Encyclopedia of Industrial Chemistry. Vol. 25 A, Hermann Müller, "Sulfuric Acid and Sulfur Tri-oxide", page 635-703, 1994 VCH Verlagsgesellschaft

- 17 Chemie Ingenieur Technik (67) 12/95, Page 1634-1638 VCH Verlagsgesellschaft, D-69469 Wein-heim, 1995 Hilmar Brunn, Claudine Kippelen, Thomas Spengler und Otto Rentz, "Luftemission der Prozeßkette: Vergipsung gebrauchter Schwefelsäure"
- 18 Sulphur No. 237, March-April 1995, "Processing options for low-SO $_2$  gases", page 29-38
- 19 Sulphur No. 236, January-February 1995, "Stricter limits for Emissions", page 20-24
- 20 Sulphur No. 258, September-October 1998, page 54, "Table 4: Suphuric acid 1995-1997"
- 21 Sulphur No. 241, November-December 1995, page 35, "Table 4: Sulphuric acid 1992-1994"
- 22 Sulphur No. 213, March-April 1991, page 30-37 "Managing the wastes from pigment production"
- 23 Sulphur No. 214, May-June 1991, page 13 "High-purity acid plant"
- 24 Sulphur No. 215, July-August 1991, page 42-44 "Rhone-Poulenc opens Europe's largest commercial regeneration plant"
- 25 Sulphur No. 229, November-December, 1993, page 40-48 "Modern plants must be immaculate"
- 26 Sulphur No. 224, January-February, 1993, page 7
- 27 Sulphur No. 230, January-February 1994, page 31-37 "Bigger smelter, smaller emissions"
- 28 Sulphur 97, Vienna, 16-19 November 1997, page 165-182, T.Inthoff, R.Roiberts, A.Phillips "Tessenderlo Chemie Acid Plant sets the Standard for World-Class Performance"
- 29 Sulphur No. 235, November-December 1994, page "Acid recycling on the Rhine river"
- 30 Sulphur No. 223, November-December 1992, page 13-14
- 31 Sulphur No. 256, May-June Page 21-23, "Sulphuric acid project listing"
- 32 Sulphur No. 228, September-October 1993, page 37-45, "Continuous monitoring of SO<sub>2</sub> emissions"
- 33 Sulphur No. 215 July-August 1991 page 29-37 "Wet catalysis sulphuric acid process dispose of problem waste gas"

# **GLOSSARY AND UNITS**

## Glossary

| ADR . | Accord européen realtif au transport international des marchandises<br>Dangereuses par Route |
|-------|----------------------------------------------------------------------------------------------|
| RID   | Règlement concernant le transport International ferroviaire des marchandises Dangereuses     |
| DA    | Double absorption                                                                            |
| ESP   | Electro static precipitator                                                                  |
| EUR   | Euro                                                                                         |
| IMO   | International Maritime Organisation                                                          |
| IR    | Infrared                                                                                     |
| ISF   | Imperial Smelting Furnace (blast furnace for Zn-Pb concentrates)                             |
| k EUR | Thousand of Euro                                                                             |
| M EUR | Million of Euro                                                                              |
| PCS   | Process control system                                                                       |
| SA    | Single absorption                                                                            |
| UV    | Ultraviolet                                                                                  |
| WCP   | Wet contact process                                                                          |
| Units |                                                                                              |

| Cintos |               |
|--------|---------------|
| MWh    | Megawatt hour |

|     | niegu nate no ar |
|-----|------------------|
| ppm | Part per million |

ppmv Part per million by volume

# **APPENDIX** Inputs and Outputs

## A1 Sulphur Burning Plants with Single Absorption

| Inputs  |                                                                                                        | Amount                                        | Unit                                                                                                        | Comments                                                                              |
|---------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|         | $SO_2$<br>$O_2$<br>$CO_2$<br>Water (in the gas)                                                        | 6-12<br>9-15<br>0<br>10                       | %<br>%<br>mg.Nm <sup>-3</sup>                                                                               | degree of variability: Low<br>degree of variability: Low<br>degree of variability: No |
| Outputs | Energy                                                                                                 | 2,500                                         | MJ                                                                                                          | net balance                                                                           |
|         | Emissions into air<br>$SO_2 *$<br>$SO_3 *$<br>$H_2SO_4 *$<br>$NO_x **$<br>$CO_2$                       | 6.7-13.3<br>0.03<br>0.03<br>< 30<br>0         | kg.t <sup>-1</sup> ***<br>kg.t <sup>-1</sup> ***<br>kg.t <sup>-1</sup> ***<br>mg.Nm <sup>-3</sup><br>%(vol) |                                                                                       |
|         | Emissions into water                                                                                   | 0                                             |                                                                                                             | no emission into water                                                                |
|         | Solid emissions                                                                                        | 10                                            | g.t <sup>-1</sup>                                                                                           | spent catalyst                                                                        |
|         | Conversion rate                                                                                        | 98-99                                         | %                                                                                                           |                                                                                       |
|         | Emission with the final<br>product<br>As<br>Hg<br>Se<br>F<br>$SO_2$<br>$NO_x$<br>HCl<br>organic carbon | < 0.01 < 0.01 < 0.01 < 0.01 < 30 < 30 < 1 < 1 | ppm<br>ppm<br>ppm<br>ppm<br>ppm<br>ppm<br>ppm<br>ppm                                                        |                                                                                       |

\*: expressed as  $SO_2$ \*\*: expressed as  $NO_2$ \*\*\*: in kg.t<sup>-1</sup> 100% sulphuric acid

| Inputs     |                                     |           |                         |                            |
|------------|-------------------------------------|-----------|-------------------------|----------------------------|
| - <b>r</b> |                                     | Amount    | Unit                    | Comments                   |
|            | SO <sub>2</sub>                     | 6-12      | %                       | degree of variability: Low |
|            | 0 <sub>2</sub>                      | 9-15      | %                       | degree of variability: Low |
|            | CO <sub>2</sub>                     | 0         | %                       | degree of variability: No  |
|            | Water (in the gas)                  | 10        | mg.Nm <sup>-3</sup>     |                            |
| Outputs    |                                     |           |                         |                            |
| _          | Energy                              | 2,500     | MJ                      | net balance                |
|            | Emissions into air                  |           |                         |                            |
|            | $SO_2 *$                            | 1.5-3.9   | kg.t <sup>-1</sup> **** |                            |
|            | SO <sub>3</sub> **                  | 0.1       | kg.t <sup>-1</sup> **** |                            |
|            | H <sub>2</sub> SO <sub>4</sub> **   | 0.1       | kg.t <sup>-1</sup> **** |                            |
|            | NO <sub>x</sub> ***                 | < 30      | mg.Nm <sup>-3</sup>     |                            |
|            | $CO_2$                              | 0         | %(vol)                  |                            |
|            | Emissions into water                | 0         |                         | no emission into water     |
|            | Solid emissions                     | 10        | g.t <sup>-1</sup>       | spent catalyst             |
|            | Conversion rate                     | 99.2-99.6 | %                       |                            |
|            | Emission with the final product**** |           |                         |                            |
|            | As                                  | < 0.01    | ppm                     |                            |
|            | Hg                                  | < 0.01    | ppm                     |                            |
|            | Se                                  | < 0.01    | ppm                     |                            |
|            | F                                   | < 0.01    | ppm                     |                            |
|            | $SO_2$                              | < 30      | ppm                     |                            |
|            | NO <sub>x</sub>                     | < 30      | ppm                     |                            |
|            | HCl                                 | < 1       | ppm                     |                            |
|            | organic carbon                      | < 1       | ppm                     |                            |

## A2 Sulphur Burning Plants with Double Absorption

\*: expressed as SO<sub>2</sub> \*\*: expressed as H<sub>2</sub>SO<sub>2</sub> \*\*\*: expressed as NO<sub>2</sub> \*\*\*\*: in kg.t<sup>-1</sup> 100% sulphuric acid

\*\*\*\*\* : those values may not be met with certain raw material

# **A3** Pyrites Roasting

| Inputs  |                                 |           |                        |                                             |
|---------|---------------------------------|-----------|------------------------|---------------------------------------------|
| Input   |                                 | Amount    | Unit                   | Comments                                    |
|         | SO <sub>2</sub>                 | 8-10      | %                      | slightly variable over time                 |
|         | 0 <sub>2</sub> <sup>2</sup>     | 8-11      | %                      |                                             |
|         | CO <sub>2</sub>                 | 0         | %                      |                                             |
|         | H <sub>2</sub> Õ                | 0         | %                      |                                             |
| Outputs |                                 |           |                        |                                             |
| -       | Energy                          | ~4,500    | MJ.t <sup>-1</sup> *** | net balance incl. roasting process          |
|         | Emissions into air              |           |                        |                                             |
|         | $SO_2 *$                        | 3.0       | kg.t <sup>-1</sup> *** |                                             |
|         | SO <sub>3</sub> *               | 0.2       | kg.t <sup>-1</sup> *** |                                             |
|         | $H_2SO_4 *$                     | n.a.      | kg.t <sup>-1</sup> *** |                                             |
|         | NO <sub>x</sub> **              | ~210      | mg.Nm <sup>-3</sup>    |                                             |
|         | CO <sub>2</sub>                 | 0         | %(vol)                 |                                             |
|         | Emissions into water            |           |                        | no emission into water                      |
|         | Solid emissions                 | ~40       | g.t <sup>-1</sup> ***  | spent catalyst                              |
|         | Conversion rate                 | 99.4-99.6 | %                      |                                             |
|         | Emission with the final product |           |                        | dependent of the analyses of<br>the pyrites |
|         | As                              | 0.01      | ppm                    | The figures are examples from               |
|         | Hg                              | 0.03      | ppm                    | one specific pyrite, see 2.1.2.1.           |
|         | Se                              | 0.05      | ppm                    |                                             |
|         | F                               | n.a.      | ppm                    |                                             |
|         | $SO_2$                          | 13        | ppm                    |                                             |
|         | NO <sub>x</sub>                 | n.a.      | ppm                    |                                             |
|         | HCl                             | n.a.      | ppm                    |                                             |
|         | Organic carbon                  | 0         | ppm                    |                                             |

\*: expressed as SO<sub>2</sub> \*\*: expressed as NO<sub>2</sub> \*\*\*: in kg.t<sup>-1</sup> 100% sulphuric acid

| Inputs  |                                                                                                                                                             |                                                                                                                   |                                      |                                                                                         |                                      |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|
|         |                                                                                                                                                             | single Abs.                                                                                                       |                                      | double Abs.                                                                             |                                      |
|         | % SO <sub>2</sub>                                                                                                                                           | 4 -                                                                                                               | ~ 6                                  | 5~9                                                                                     |                                      |
|         | % O <sub>2</sub>                                                                                                                                            | 6~                                                                                                                | • 12                                 | 6~11                                                                                    |                                      |
|         | % CO <sub>2</sub>                                                                                                                                           | х                                                                                                                 |                                      | х                                                                                       |                                      |
|         | % H <sub>2</sub> O                                                                                                                                          | X                                                                                                                 |                                      | X                                                                                       |                                      |
|         | variability in time                                                                                                                                         | low                                                                                                               |                                      | low                                                                                     |                                      |
|         | Energy MJ.t <sup>-1</sup> .H <sub>2</sub> SO <sub>4</sub>                                                                                                   |                                                                                                                   |                                      | ~ 600                                                                                   |                                      |
| Outputs | Air emission at stack                                                                                                                                       | kg.t <sup>-1</sup> H <sub>2</sub> SO <sub>4</sub>                                                                 | mg.NO <sub>x</sub> .Nm <sup>-3</sup> | kg.t <sup>-1</sup> $H_2SO_4$                                                            | mg.NO <sub>x</sub> .Nm <sup>-3</sup> |
|         | SO <sub>2</sub>                                                                                                                                             | 7~12                                                                                                              | х                                    | 1.7 ~ 3.3                                                                               | x                                    |
|         | $SO_3^2$                                                                                                                                                    | 0.1 ~ 0.2                                                                                                         | x                                    | $0.05 \sim 0.08$                                                                        | x                                    |
|         | NO <sub>x</sub>                                                                                                                                             |                                                                                                                   | 150                                  |                                                                                         | 150                                  |
|         | H <sub>2</sub> SO <sub>4</sub>                                                                                                                              | 0.05 ~ 0.1                                                                                                        | x                                    | 0.05 ~ 0.08                                                                             | X                                    |
|         | Conversion<br>SO <sub>2</sub> /SO <sub>3</sub>                                                                                                              | 98 ~ 99%                                                                                                          |                                      | 99.5 ~ 99.7%                                                                            |                                      |
|         | H <sub>2</sub> O emission                                                                                                                                   | no contaminants                                                                                                   |                                      | no contaminants                                                                         |                                      |
|         | Spent Catalyst                                                                                                                                              | $20 \sim 40$ g.t <sup>-1</sup> .H <sub>2</sub> SO <sub>4</sub><br>to recycle in process                           |                                      | $20 \sim 40$ g.t <sup>-1</sup> .H <sub>2</sub> SO <sub>4</sub><br>to recycle in process |                                      |
|         | $\begin{array}{c} \mathrm{H_2SO_4} \\ \mathrm{Hg} \\ \mathrm{As} \\ \mathrm{Se} \\ \mathrm{SO_2} \\ \mathrm{NO_2} \\ \mathrm{Org} \ \mathrm{C} \end{array}$ | max 1ppm<br>max 0.5ppm<br>max 0.2ppm<br>< 50ppm<br>5~30ppm<br>max 1ppm<br>3,500<br>1,000 ~ 2,000<br>3,900 ~ 4,900 |                                      |                                                                                         |                                      |
|         | Energy<br>steam in Roasting Process<br>$MJ.t^{-1}.H_2SO_4$<br>(waste) heat in acid<br>production:                                                           |                                                                                                                   |                                      |                                                                                         |                                      |
|         | production:-<br>MJ.t <sup>-1</sup> .H <sub>2</sub> SO <sub>4</sub>                                                                                          |                                                                                                                   |                                      |                                                                                         |                                      |
|         | Net Balance (In-Out)                                                                                                                                        |                                                                                                                   |                                      |                                                                                         |                                      |

# A4 Zn, Pb Smelter Sulphuric Acid Plants

| Inputs  |                                                                                            |                                                                   |                                      |                                                   |                                      |
|---------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|--------------------------------------|
| Inputs  |                                                                                            | single Abs.                                                       |                                      | double Abs.                                       |                                      |
|         | % SO <sub>2</sub>                                                                          | 2.70%                                                             | on dry                               |                                                   |                                      |
|         | % O <sub>2</sub> <sup>2</sup>                                                              | 2.50%                                                             | on dry                               |                                                   |                                      |
|         | % CO <sub>2</sub>                                                                          | 20.00% on dry                                                     |                                      |                                                   |                                      |
|         | % H <sub>2</sub> O                                                                         | 45%                                                               |                                      |                                                   |                                      |
|         | variability in time                                                                        | extremely                                                         |                                      |                                                   |                                      |
|         | Energy MJ.t <sup>-1</sup> .H <sub>2</sub> SO <sub>4</sub>                                  | 900                                                               |                                      |                                                   |                                      |
| Outputs | Air emission at stack                                                                      | kg.t <sup>-1</sup> $H_2SO_4$                                      | mg.NO <sub>2</sub> .Nm <sup>-3</sup> | kg.t <sup>-1</sup> H <sub>2</sub> SO <sub>4</sub> | mg.NO <sub>2</sub> .Nm <sup>-3</sup> |
|         | SO <sub>2</sub>                                                                            | 6~10                                                              |                                      |                                                   | x                                    |
|         | SO <sub>3</sub>                                                                            | see $H_2SO_4$                                                     |                                      |                                                   | x                                    |
|         | NO <sub>2</sub>                                                                            |                                                                   | 100                                  |                                                   |                                      |
|         | H <sub>2</sub> SO <sub>4</sub>                                                             | 0.15                                                              |                                      |                                                   | Х                                    |
|         | Conversion<br>SO <sub>2</sub> /SO <sub>3</sub>                                             | 99.0-99.2%                                                        |                                      |                                                   |                                      |
|         | H <sub>2</sub> O emission                                                                  | none                                                              |                                      |                                                   |                                      |
|         | Spent Catalyst                                                                             | $20 \sim 40$<br>g.t <sup>-1</sup> .H <sub>2</sub> SO <sub>4</sub> |                                      |                                                   |                                      |
|         | H <sub>2</sub> SO <sub>4</sub><br>Hg                                                       | <1p                                                               |                                      | pm                                                |                                      |
|         | As                                                                                         | <0.2]                                                             |                                      | * *                                               |                                      |
|         | Se                                                                                         | <0.5ppm                                                           |                                      |                                                   |                                      |
|         | SO <sub>2</sub><br>NO <sub>2</sub>                                                         | 90ppm<br>150ppm                                                   |                                      |                                                   |                                      |
|         | Org C                                                                                      |                                                                   | 40p                                  |                                                   |                                      |
|         | Energy<br>steam in Roasting Process<br>MJ.t <sup>-1</sup> .H <sub>2</sub> SO <sub>4</sub>  | depending on S-content                                            |                                      |                                                   |                                      |
|         | (waste) heat in acid<br>production:-<br>MJ.t <sup>-1</sup> .H <sub>2</sub> SO <sub>4</sub> | 1,000 ~ 2,000                                                     |                                      |                                                   |                                      |
|         | Net Balance (In-Out)                                                                       | ~1,000                                                            |                                      | )-2,000                                           |                                      |

# A5 Complex (Pb, Cu) S Batch Treatment

| T (     |                                 |                                 |             |                   |                                                                      |  |
|---------|---------------------------------|---------------------------------|-------------|-------------------|----------------------------------------------------------------------|--|
| Inputs  |                                 |                                 | Double      | Single            |                                                                      |  |
|         |                                 | Unit                            | Absorption  | Absorption        | Comments                                                             |  |
|         | SO <sub>2</sub>                 | %                               | 5-13        | 3-10              | degree of variability: High                                          |  |
|         | 0 <sub>2</sub>                  | %                               | 8-16        | 11-18             | degree of variability: High                                          |  |
|         | CO <sub>2</sub>                 | %                               | 0-3         | 0-3               | degree of variability: High                                          |  |
|         | Water (in the gas)              | % (vol)                         | 5-7         | 5-7               |                                                                      |  |
|         | Process water                   | m <sup>3</sup> .t <sup>-1</sup> | 0-0.2       | 0-0.2             |                                                                      |  |
| Outputs |                                 | M                               | 2 000 2 000 | 2 000 2 000       | .1.1                                                                 |  |
|         | Energy                          | MJ                              | 2,000-2,900 | 2,000-2,900       | net balance                                                          |  |
|         | Emissions into air              |                                 |             |                   |                                                                      |  |
|         | SO <sub>2</sub> *               | kg.t <sup>-1</sup> ***          | 1.2-3.3     | 6.5-20            |                                                                      |  |
|         | $SO_3 * + H_2SO_4*$             | kg.t <sup>-1</sup> ***          | 0.05-0.2    | 0.06-0.35         |                                                                      |  |
|         | $H_2SO_4 *$                     | kg.t <sup>-1</sup> ***          |             |                   |                                                                      |  |
|         | NO <sub>x</sub> **              | mg.Nm <sup>-3</sup>             |             |                   | Variability: High, depending                                         |  |
|         |                                 |                                 |             |                   | on smelter O2 enrichment                                             |  |
|         | CO <sub>2</sub>                 | %(vol)                          | 0-4         | 0-4               |                                                                      |  |
|         | Emissions into                  |                                 |             |                   |                                                                      |  |
|         | water                           |                                 |             |                   | no emission into water                                               |  |
|         | Solid emissions spent catalyst  | g.t <sup>-1</sup>               | 20-40       | 20-40             | 5-10% of the installed catalyst                                      |  |
|         | spent cataryst                  | g.1                             | 20-40       | 20-40             | and per screening operation                                          |  |
|         | Conversion rate                 | %                               | 99.5-99.8   | 97-99             |                                                                      |  |
|         | Emission with the final product |                                 |             |                   |                                                                      |  |
|         | As                              | ppm                             | < 1         | Similar to double |                                                                      |  |
|         |                                 |                                 |             | absorption        |                                                                      |  |
|         | Hg                              | ppm                             | < 1         | "                 |                                                                      |  |
|         | Se                              | ppm                             | < 0.5       | "                 |                                                                      |  |
|         | F                               | ppm                             | 0-2         | "                 |                                                                      |  |
|         | SO <sub>2</sub>                 | ppm                             | <30         | "                 |                                                                      |  |
|         | NO <sub>x</sub>                 | ppm                             | <40         | "                 | Variability: High, depending<br>on smelter O <sub>2</sub> enrichment |  |
|         | HCl                             | ppm                             | <5          | "                 | 2                                                                    |  |
|         | organic carbon                  | ppm                             | traces      | "                 | Influenced by the smelter fuel combustion burner type (<50)          |  |

## A6 Copper Smelter Sulphuric Acid Plant

\* : expressed as SO<sub>2</sub>

\*\* : expressed as NO<sub>2</sub>

\*\*\* : in kg.t<sup>-1</sup> 100% sulphuric acid

# A7 Spent Acid Regeneration

| Inputs  |                                 |                 |                                               |                                |
|---------|---------------------------------|-----------------|-----------------------------------------------|--------------------------------|
| Inputs  |                                 | Amount          | Unit                                          | Comments                       |
|         | SO <sub>2</sub>                 | 7               | %                                             | degree of variability: 2 -10%  |
|         | $O_2^2$                         | 8               | %                                             | degree of variability: 5-15%   |
|         | CO <sub>2</sub>                 | 5               | %                                             | degree of variability: 1-10%   |
|         | Water (in the gas)              | 10              | mg.Nm <sup>-3</sup>                           |                                |
| Outputs |                                 |                 |                                               |                                |
|         | Energy                          | 2,500           | MJ                                            | net balance                    |
|         | Emissions into air              |                 |                                               |                                |
|         | SO <sub>2</sub> *               | 2.6 to 2.7      | kg.t <sup>-1</sup> ***                        |                                |
|         | _                               |                 | DA: 2.6 to 6.6                                |                                |
|         | 0.0 ·*                          | 0.02            | SA: 10 to 27                                  |                                |
|         | SO <sub>3</sub> *               | 0.03            | kg.t <sup>-1</sup> ***                        |                                |
|         | $H_2SO_4 *$                     | 0.03<br>0 to 50 | kg.t <sup>-1</sup> ***<br>mg.Nm <sup>-3</sup> |                                |
|         | NO <sub>x</sub> **              | 4               | -                                             |                                |
|         | CO <sub>2</sub>                 |                 | %(vol)                                        |                                |
|         | Emissions into water            | 0               |                                               | no emission into water         |
|         | Solid emissions                 | 0               | g.t <sup>-1</sup>                             | spent catalyst                 |
|         | Conversion rate                 | 96 to 99.6      | %<br>DA: 99 to 99.5<br>SA: 96 to 98.5         |                                |
|         | Emission with the final product |                 |                                               |                                |
|         | As                              | < 0.01          | ppm                                           |                                |
|         | Hg                              | < 0.01          | ppm                                           |                                |
|         | Se                              | < 0.01          | ppm                                           |                                |
|         | F                               | < 0.01          | ppm                                           |                                |
|         | SO <sub>2</sub>                 | < 30            | ppm                                           |                                |
|         | NO <sub>x</sub>                 | < 30            | ppm                                           | Depends on the spent acid type |
|         | HCl                             | < 1             | ppm                                           |                                |
|         | organic carbon                  | < 1             | ppm                                           |                                |

\*: expressed as SO<sub>2</sub> \*\*: expressed as NO<sub>2</sub> \*\*\*: in kg.t<sup>-1</sup> 100% sulphuric acid

## A8 Scheme of Energy Output from a Sulphur Burner Double Absorption Plant (Bayer)

The plant has a capacity of 625t.d  $^{-1}$  100% sulphuric acid. The inlet SO  $_2$  concentration bed 1 is 10.5%.



## Best Available Techniques Booklets were first issued by EFMA in 1995 Second revised edition 2000

- 1. Production of Ammonia
- 2. Production of Nitric Acid
- 3. Production of Sulphuric Acid (in collaboration with ESA)
- 4. Production of Phosphoric Acid
- 5. Production of Urea and Urea-Ammonium Nitrate
- 6. Production of Ammonium Nitrate and Calcium Ammonium Nitrate
- 7. Production of NPK Compound Fertilizers by Nitrophosphate Route
- 8. Production of NPK Compound Fertilizers by Mixed Acid Route